141 research outputs found

    Compromized geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency

    Get PDF
    Mevalonate kinase deficiency (MKD) is an autoinflammatory disorder caused by mutations in the MVK gene resulting in decreased activity of the enzyme mevalonate kinase (MK). Although MK is required for biosynthesis of all isoprenoids, in MKD, in particular, the timely synthesis of geranylgeranyl pyrophosphate appears to be compromised. Because small guanosine triphosphatases (GTPases) depend on geranylgeranylation for their proper signaling function, we studied the effect of MK deficiency on geranylgeranylation and activation of the two small GTPases, RhoA and Rac1. We demonstrate that both geranylgeranylation and activation of the two GTPases are more easily disturbed in MKD cells than in control cells when the flux though the isoprenoid biosynthesis pathway is suppressed by low concentrations of simvastatin. The limited capacity of geranylgeranylation in MKD cells readily leads to markedly increased levels of nonisoprenylated and activated GTPases, which will affect proper signaling by these GTPases

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Mice expressing a human KATP channel mutation have altered channel ATP sensitivity but no cardiac abnormalities

    Get PDF
    AIMS/HYPOTHESIS: Patients with severe gain-of-function mutations in the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel, have neonatal diabetes, muscle hypotonia and mental and motor developmental delay-a condition known as iDEND syndrome. However, despite the fact that Kir6.2 forms the pore of the cardiac K(ATP) channel, patients show no obvious cardiac symptoms. The aim of this project was to use a mouse model of iDEND syndrome to determine whether iDEND mutations affect cardiac function and cardiac K(ATP) channel ATP sensitivity. METHODS: We performed patch-clamp and in vivo cine-MRI studies on mice in which the most common iDEND mutation (Kir6.2-V59M) was targeted to cardiac muscle using Cre-lox technology (m-V59M mice). RESULTS: Patch-clamp studies of isolated cardiac myocytes revealed a markedly reduced K(ATP) channel sensitivity to MgATP inhibition in m-V59M mice (IC(50) 62 μmol/l compared with 13 μmol/l for littermate controls). In vivo cine-MRI revealed there were no gross morphological differences and no differences in heart rate, end diastolic volume, end systolic volume, stroke volume, ejection fraction, cardiac output or wall thickening between m-V59M and control hearts, either under resting conditions or under dobutamine stress. CONCLUSIONS/INTERPRETATION: The common iDEND mutation Kir6.2-V59M decreases ATP block of cardiac K(ATP) channels but was without obvious effect on heart function, suggesting that metabolic changes fail to open the mutated channel to an extent that affects function (at least in the absence of ischaemia). This may have implications for the choice of sulfonylurea used to treat neonatal diabetes

    Transcriptome profiling during a natural host-parasite interaction

    Get PDF
    BACKGROUND: Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). RESULTS: We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. CONCLUSIONS: We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1838-0) contains supplementary material, which is available to authorized users

    Are preferences over health states informed?

    Get PDF
    BACKGROUND: The use of preference-elicitation tasks for valuing health states is well established, but little is known about whether these preferences are informed. Preferences may not be informed because individuals with little experience of ill health are asked to value health states. The use of uninformed preferences in cost-effectiveness can result in sub-optimal resource allocation. The aim of this study was to pilot a novel method to assess whether members of the public are informed about health states they value in preference-elicitation tasks. METHODS: The general public was said to be informed if the expectations of the public about the effect of ill health on people's lives were in agreement with the experience of patients. Sixty-two members of the public provided their expectations of the consequences of ill health on five life domains (activities, enjoyment, independence, relationships, and avoiding being a burden). A secondary dataset was used to measure patient experience on those five consequences. RESULTS: There were differences between the expectations of the public and the experience of patients. For example, for all five life consequences the public underestimated the effects of problems in usual activities compared to problems in mobility. They also underestimated the effect of 'anxiety or depression' compared to physical problems on enjoyment of life and on the quality of personal relationships. CONCLUSIONS: This proof-of-concept study showed that it is possible to test whether preferences are informed. This study should be replicated using a larger sample. The findings suggest that preferences over health states in this sample are not fully informed because the participants do not have accurate expectations about the consequences of ill health. These uninformed preferences may not be adequate for allocation of public resources, and research is needed into methods to make them better informed

    Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review

    Get PDF
    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction

    Intra-Genomic Ribosomal RNA Polymorphism and Morphological Variation in Elphidium macellum Suggests Inter-Specific Hybridization in Foraminifera

    Get PDF
    Elphidium macellum is a benthic foraminifer commonly found in the Patagonian fjords. To test whether its highly variable morphotypes are ecophenotypes or different genotypes, we analysed 70 sequences of the SSU rRNA gene from 25 specimens. Unexpectedly, we identified 11 distinct ribotypes, with up to 5 ribotypes co-occurring within the same specimen. The ribotypes differ by varying blocks of sequence located at the end of stem-loop motifs in the three expansion segments specific to foraminifera. These changes, distinct from typical SNPs and indels, directly affect the structure of the expansion segments. Their mosaic distribution suggests that ribotypes originated by recombination of two or more clusters of ribosomal genes. We propose that this expansion segment polymorphism (ESP) could originate from hybridization of morphologically different populations of Patagonian Elphidium. We speculate that the complex geological history of Patagonia enhanced divergence of coastal foraminiferal species and contributed to increasing genetic and morphological variation
    corecore