169 research outputs found

    The Marysville, Montana Geothermal Project

    Get PDF
    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet

    Noninvasive electrocardiographic imaging of dynamic atrioventricular delay programming in a patient with left bundle branch block

    Get PDF
    Introduction The response to cardiac resynchronization therapy (CRT) is determined by various factors, including left ventricular (LV) lead location, atrioventricular (AV) delay, and inter-/intraventricular delays. Advances in quadripolar lead technology and device algorithms have improved patient response, yet selection of optimal settings remains challenging. Studies have shown acute improvement in electrical synchrony with manual AV optimization by fusion optimized intervals1,2; automated device algorithms, for example AdaptivCRT (Medtronic, Minneapolis, MN),3 SmartDelay (Boston Scientific, Marlborough, MA),4 and SyncAVTM (Abbott, Sylmar, CA)5; and pacing from multiple LV lead electrodes with MultiPoint Pacing (MPP).6,7 The aim of this clinical case report was to evaluate the acute benefits of SyncAV Plus in the new-generation, Bluetooth-enabled GallantTM CRT device (Abbott, Sylmar, CA). SyncAV Plus continually programs the paced AV delay shorter than the intrinsic PR interval by a programmable offset (% of PR duration) to synchronize intrinsic and ventricular paced activation wavefronts. Twelve-lead electrocardiogram (ECG) and noninvasive electrocardiographic imaging (ECGi) epicardial mapping analyses were performed to characterize the impact of SyncAV Plus on electrical synchrony during a range of CRT programming strategies, including biventricular (BiV) pacing, MPP, LV-only pacing, and LV-only pacing with MPP

    Long term conservation of electrical synchrony by multipoint pacing with dynamic atrioventricular delays

    Get PDF
    Introduction Automatic adjustment of atrioventricular delay (AVD) with SyncAV has been shown to improve electrical synchronization. However, the long term effects of SyncAV optimization on electrical synchrony are unknown. Purpose Evaluate the effect of SyncAV programming on 6-month (6mo) QRS duration during biventricular (BiV) and left ventricle only MultiPoint Pacing (MPP). Methods Patients with LBBB and QRS duration (QRSd) ≥ 150 ms scheduled for CRT-P/D device implantation with quadripolar LV lead were enrolled in this prospective study. QRSd was measured post-implant from 12-lead surface ECG by blinded experts during the following pacing modes: intrinsic conduction, MPP (MPP=RV+LV1+LV2) and LV-only MPP (LVMPP=LV1+LV2). For each mode, SyncAV was enabled (e.g. MPP+SyncAV) with the patient-tailored SyncAV offset that minimized QRSd. Patients were then randomized 1:1 to receive MPP+SyncAV or LVMPP+SyncAV with the optimal offset identified at implant, and QRSd was re-evaluated at the 6mo follow-up. Results Fifty-nine patients (72% male, 41% ischemic, 26% ejection fraction, 166 ms intrinsic QRSd) completed device implant and QRSd assessment. Relative to intrinsic conduction at implant, the MPP+SyncAV group (n=30) had a QRSd reduction of 26% at implant (162 to 122 ms, p<0.001), and 20% at 6mo (162 to 130 ms, p<0.001). The LVMPP+SyncAV group (n=29) had a QRSd reduction of 24% at implant (165 to 128 ms, p<0.001), and 15% at 6mo (165 to 140 ms, p<0.001). In the MPP+SyncAV group, 28/30 (93%) of patients had more than 10% reduction in QRSd with respect to intrinsic at implant, with 27/30 (90%) maintaining this trend at 6 mo follow up. With LVMPP+SyncAV pacing, only 25/29 (86%) of patients had more than 10% reduction in QRSd with respect to intrinsic at implant, and this reduced to 18/29 (62%) maintaining this trend at 6 mo follow up. Conclusion MPP combined with SyncAV significantly improved acute electrical synchrony at implant in CRT patients with LBBB, as assessed by QRSd reduction. Significant QRSd reduction was maintained at 6 months post-implant by both biventricular and LV-only MPP configurations

    EARLY RESULTS OF ECOPOESIS EXPERIMENTS IN THE SHOT MARTIAN ENVIRONMENT SIMULATOR

    Get PDF
    ABSTRACT Humanity is on the verge of having the capability of constructively directing environmental changes on a planetary scale. One could argue that we are making these changes on Earth today, but in a negative manner. Within the foreseeable future, we will have the technology to modify Mars' environment, and make it a habitable planet. However, we do not have enough information to determine the course of such an event. SHOT has designed and built a test-bed apparatus that can replicate most of Mars' environment conditions (with the notable exceptions of gravity and cosmic radiation) within a 5.6 liter chamber. Here, we present the results of initial experiments to determine the suitability of specific microorganisms as pioneering life-forms for Mars. Included among the potential pioneers were five genera of cyanobacteria (Anabaena, Chroococcidiopsis, Plectonema, Synechococcus and Syenechocystis), and three partially-characterized eubacterial strains that were isolated from Chile's Atacama Desert (two species of Bacillus and Klebsiella oxytoca). During these initial trials, we used a present-day mix of martian atmsospheric gases, but at a pressure of 100 mbar (10 times Mars's current atmospheric pressure). Organisms were inoculated into samples of JSC Mars-1 soil stimulant and exposed to full-spectrum simulated martian sunlight. Day/night temperature cycled from 26°C to -80°C and back. Experiments included a 24-hour, brief-exposure trial, a 7-day trial, a14-day trial and a 5-week trial to determine the survival and growth of our potential martian pioneers

    Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II.

    Get PDF
    Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones

    Artificial Intelligence for the Electron Ion Collider (AI4EIC)

    Full text link
    The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments.Comment: 27 pages, 11 figures, AI4EIC workshop, tutorials and hackatho

    Potential side effects of biocontrol and plant-growth promoting Bacillus amyloliquefaciens bacteria on earthworms

    Get PDF
    After 1-2 months, survival, growth and reproduction of the earthworms were recorded. We found no effect of the treatments as compared to control without BA amendments. We conclude that the use of high doses of BA with concentrations at the same magnitude as maximally expected when the bacteria are used as PGPR and BCA, is not harmful to the soil dwelling earthworms tested in this project. Further studies of the ecological effects of PGPR and BCA bacteria on other non-target soil organisms are encouraged. The development of sustainable agricultural systems, where ecosystem services are optimized, has to be aided by a deeper knowledge of the combined effect of bacteria and earthworms on the promotion of plant health. (C) 2015 Elsevier B.V. All rights reserved
    corecore