17 research outputs found
A computational study of doped olivine structured Cd2GeO4: local defect trapping of interstitial oxide ions
Computational modelling techniques have been employed to investigate defects and ionic conductivity in Cd2GeO4. We show due to highly unfavourable intrinsic defect formation energies the ionic conducting ability of pristine Cd2GeO4 is extremely limited. The modelling results suggest trivalent doping on the Cd site as a viable means of promoting the formation of the oxygen interstitial defects. However, the defect cluster calculations for the first time explicitly suggest a strong association of the oxide defects to the dopant cations and tetrahedral units. Defect clustering is a complicated phenomenon and therefore not trivial to assess. In this study the trapping energies are explicitly quantified. The trends are further confirmed by molecular dynamic simulations. Despite this, the calculated diffusion coefficients do suggest an enhanced oxide ion mobility in the doped system compared to the pristine Cd2GeO4
Mechanism of carbon dioxide and water incorporation in Ba2TiO4: A joint computational and experimental study
© 2017 American Chemical Society. CO 2 incorporation in solids is attracting considerable interest in a range of energy-related areas. Materials degradation through CO 2 incorporation is also a critical problem with some fuel cell materials, particularly for proton conducting ceramic fuel cells. Despite this importance, the fundamental understanding of the mechanism of CO 2 incorporation is lacking. Furthermore, the growing use of lower temperature sol gel routes for the design and synthesis of new functional materials may be unwittingly introducing significant residual carbonate and hydroxyl ions into the material, and so studies such as the one reported here investigating the incorporation of carbonate and hydroxyl ions are important, to help explain how this may affect the structure and properties. This study on Ba 2 TiO 4 suggests highly unfavorable intrinsic defect formation energies but comparatively low H 2 O and CO 2 incorporation energies, in accord with experimental findings. Carbonate defects are likely to form in both pristine and undoped Ba 2 TiO 4 systems, whereas those based on H 2 O will only form in systems containing other supporting defects, such as oxygen interstitials or vacancies. However, both hydroxyl and carbonate defects will trap oxide ion defects induced through doping, and the results from both experimental and modeling studies suggest that it is primarily the presence of carbonate that is responsible for stabilizing the high temperature α′-phase at lower temperatures
Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations
Modern software engineering of electronic structure codes has seen a paradigm shift from monolithic workflows toward object-based modularity. Software objectivity allows for greater flexibility in the application of electronic structure calculations, with particular benefits when integrated with approaches for data-driven analysis. Here, we discuss different approaches to create deep modular interfaces that connect big-data workflows and electronic structure codes and explore the diversity of use cases that they can enable. We present two such interface approaches for the semi-empirical electronic structure package, DFTB+. In one case, DFTB+ is applied as a library and provides data to an external workflow; in another, DFTB+ receives data via external bindings and processes the information subsequently within an internal workflow. We provide a general framework to enable data exchange workflows for embedding new machine-learning-based Hamiltonians within DFTB+ or enabling deep integration of DFTB+ in multiscale embedding workflows. These modular interfaces demonstrate opportunities in emergent software and workflows to accelerate scientific discovery by harnessing existing software capabilities
Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations
Modern software engineering of electronic structure codes has seen a paradigm shift from monolithic workflows towards object-based modularity. Software objectivity allows for greater flexibility in the application of electronic structure calculations, with particular benefits when integrated with approaches for data-driven analysis. Here, we discuss different approaches to create "deep" modular interfaces that connect big-data workflows and electronic structure codes, and explore the diversity of use cases that they can enable. We present two such interface approaches for the semi-empirical electronic structure package, DFTB+. In one case, DFTB+ is applied as a library and provides data to an external workflow; and in another, DFTB+ receives data via external bindings and processes the information subsequently within an internal workflow. We provide a general framework to enable data exchange workflows for embedding new machine-learning-based Hamiltonians within DFTB+, or to enabling deep integration of DFTB+ in multiscale embedding workflows. These modular interfaces demonstrate opportunities in emergent software and workflows to accelerate scientific discovery by harnessing existing software capabilities
Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models
We propose a scheme to construct predictive models for Hamiltonian matrices in atomic orbital representation from ab initio data as a function of atomic and bond environments. The scheme goes beyond conventional tight binding descriptions as it represents the ab initio model to full order, rather than in two-centre or three-centre approximations. We achieve this by introducing an extension to the atomic cluster expansion (ACE) descriptor that represents Hamiltonian matrix blocks that transform equivariantly with respect to the full rotation group. The approach produces analytical linear models for the Hamiltonian and overlap matrices. Through an application to aluminium, we demonstrate that it is possible to train models from a handful of structures computed with density functional theory, and apply them to produce accurate predictions for the electronic structure. The model generalises well and is able to predict defects accurately from only bulk training data
A Bronze Age Round Barrow Cemetery, Pit Alignments, Iron Age Burials, Iron Age Copper Working, and Later Activity at Four Crosses, Llandysilio, Powys.
Excavation undertaken at the Upper Severn valley round barrow cemetery at Four Crosses, Llandysilio between 2004 and 2006 has increased the known barrows and ring-ditches to some 26 monuments, and revealed additional burials. Based on limited dating evidence, and the data from earlier excavations, the majority of the barrows are thought to be constructed in the Bronze Age. The barrows are part of a larger linear cemetery and the landscape setting and wider significance of this linear barrow cemetery are explored within this report. Dating suggests two barrows were later, Iron Age additions. The excavation also investigated Iron Age and undated pit alignments, Middle Iron Age copper working and a small Romano-British inhumation cemetery and field systems. Much of this evidence reflects the continuing importance of the site for ritual and funerary activity
Mechanism of Carbon Dioxide and Water Incorporation in Ba<sub>2</sub>TiO<sub>4</sub>:A Joint Computational and Experimental Study
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see https://doi.org/10.1021/acs.jpcc.7b10330© 2017 American Chemical Society. CO 2 incorporation in solids is attracting considerable interest in a range of energy-related areas. Materials degradation through CO 2 incorporation is also a critical problem with some fuel cell materials, particularly for proton conducting ceramic fuel cells. Despite this importance, the fundamental understanding of the mechanism of CO 2 incorporation is lacking. Furthermore, the growing use of lower temperature sol gel routes for the design and synthesis of new functional materials may be unwittingly introducing significant residual carbonate and hydroxyl ions into the material, and so studies such as the one reported here investigating the incorporation of carbonate and hydroxyl ions are important, to help explain how this may affect the structure and properties. This study on Ba 2 TiO 4 suggests highly unfavorable intrinsic defect formation energies but comparatively low H 2 O and CO 2 incorporation energies, in accord with experimental findings. Carbonate defects are likely to form in both pristine and undoped Ba 2 TiO 4 systems, whereas those based on H 2 O will only form in systems containing other supporting defects, such as oxygen interstitials or vacancies. However, both hydroxyl and carbonate defects will trap oxide ion defects induced through doping, and the results from both experimental and modeling studies suggest that it is primarily the presence of carbonate that is responsible for stabilizing the high temperature α′-phase at lower temperatures
Life by the river: a prehistoric landscape at Grendon, Northamptonshire
This paper describes the development of a prehistoric landscape by the river Nene at Grendon Lakes, partly revealed in the 1970s and partly during excavations in 1998 and 2001, which are reported in full. Two major phases of archaeological activity are evident, one interpreted as Neolithic�Early Bronze Age, the other as Iron Age. The gap between these is bridged by an environmental sequence reconstructed with the aid of a pollen core from an adjacent palaeochannel, which shows that human activity continued in the intervening period. The landscape is comparable in form, though not in scale, with that investigated 13 km downstream at Raunds, and helps shed light on the distinctive features of Midlands river valleys like the Nene in prehistory. In conclusion it is suggested that the different characters of the Neolithic and Iron Age features at Grendon mask some underlying similarities in the way they structured people�s movements and encounters