113 research outputs found

    Pre-treatment energy status of primary rat tumours as the best predictor of response to 5-fluorouracil chemotherapy: a magnetic resonance spectroscopy study in vivo

    Get PDF
    Purpose: Fluorine-19 magnetic resonance spectroscopy ( F-MRS) studies of the pharmacokinetics of the anticancer drug 5-fluorouracil (FU) in patients at several clinical centres have shown that increased tumour retention of FU is associated with patient response. The mechanism of this increased tumour retention (FU trapping) is unknown. We used a pre-clinical model to investigate whether other MRS-measurable parameters would correlate with the response to FU treatment and, thus, help elucidate the mechanism(s) involved in FU trapping. Methods: MRS spectra were obtained using a double-tuned (P-31/F-19) surface coil from 29 N-methyl-N-nitrosourea-induced primary rat rumours. P-31-MRS spectra were acquired immediately prior to and at 2.5 h post-treatment with a bolus i.p. injection of FU (100 mg/kg); F-19-MRS spectra were acquired during the intervening 2.5-h period for measurement of the tumour uptake and retention of FU and of its metabolism to the cytotoxic fluoronucleotides (FNuct). From these data, four parameters were measured: tumour pH and energy status (NTP/Pi) before treatment, total FU retention, and FU anabolism to FNuct (expressed as micromoles per gram per 2.5 h). In addition, tumour response was determined at 7 days post-treatment by measurement of the percentage of change in tumour weight and was classified according to standard oncological criteria as follows: progressive (P) for a 225% increase, remissive (R) for a greater than or equal to 50% decrease or stable (S) for values lying between these two. Results: Analysis of variance (ANOVA) for statistical assessment revealed that groups P, S and R were not distinguishable using the MRS parameters; although when S and R were combined as one group of non-progressive disease (NPD; n = 24), both the NTP/Pi ratio and the total FNuct formed were significantly greater (P = 0.03) than those observed in the P group (Iz = 5). Considering all 29 tumours, linear regression showed that there were positive significant correlations between the NTP/Pi ratio and (a) the percentage of response (P = 0.04), (b) the pre-treatment pH (P = 0.002) and (c) FU retention (P = 0.02), but not FNuct formation(P = 0.66). Unlike results reported in the clinic, the percentage of response and FU retention were neither significantly correlated (P = 0.22) nor associated when groups P and NPD were compared (P = 0.27, Fischer\u27s exact test). FNuct, however, was significantly associated with response, as was the NTP/Pi ratio (P less than or equal to 0.02). Combination of FNuct with the NTP/Pi ratio increased the significance of the association with response (P = 0.003, Fischer\u27s exact test). Conclusions: Our results indicate that in this particular model the pretreatment tumour NTP/Pi ratio was the best predictor of response to a bolus injection of FU, rather than FNuct formation or FU retention. An elevated NTP/Pi ratio could reflect a well-vascularised tumour with an improved capacity for energy-dependent FU uptake and metabolism to FNuct, suggesting that further investigation of this parameter could be an important line of research, which may aid the identification of tumours likely to be sensitive to FU chemotherapy in the clinic

    The response to carbogen breathing in experimental tumour models monitored by gradient-recalled echo magnetic resonance imaging.

    Get PDF
    Gradient-recalled echo magnetic resonance imaging (GRE MRI), which gives information on blood flow and oxygenation changes (Robinson SP, Howe FA, Griffiths JR 1995, Int J Radiat Oncol Biol Phys 33: 855), was used to observe the responses of six rodent tumour models to carbogen breathing. In one transplanted rat tumour, the Morris hepatoma 9618a, and a chemically induced rat tumour, the MNU-induced mammary adenocarcinoma, there were marked image intensity increases, similar to those previously observed in the rat GH3 prolactinoma. In contrast, the rat Walker carcinosarcoma showed no response. In two mouse tumours, the RIF-1 fibrosarcoma and the human xenograft HT29, carbogen breathing induced a transient fall in signal intensity that reversed spontaneously within a few minutes. The rat GH3 prolactinoma was xenografted into nude mice, and an increase in image intensity was found in response to carbogen, suggesting that any effects that carbogen may have had on the host were not significant determinants of the tumour response. The increases in GRE image intensity of the MNU, H9618a and GH3 tumours during carbogen breathing are consistent with increases in tumour oxygenation and blood flow, whereas the responses of the RIF-1 and HT29 tumours may be the result of a transient steal effect followed by homeostatic correction

    Comparison of [18F]-Tracers in Various Experimental Tumor Models by PET Imaging and Identification of an Early Response Biomarker for the Novel Microtubule Stabilizer Patupilone

    Get PDF
    Purpose: The suitability of [18F]FDG, [18F]FLT, [18F]FET, and [18F]FCH as non-invasive positron emission tomography (PET) biomarkers for monitoring response to chemotherapy was analyzed in various experimental tumor models. Procedures: Tracer uptake into three syngeneic rodent tumor models and ten human xenograft models was evaluated using semiquantitative analysis of small-animal PET data. Murine RIF-1 fibrosarcomas and [18F]FLT were selected to monitor the effects of the novel cytotoxic patupilone. Results: Except [18F]FCH, all tracers provided good tumor visualization. Highest [18F]FDG uptake was identified in syngeneic tumors. Xenograft models, however, showed low [18F]FDG SUVs and were better visualized by [18F]FLT. Monitoring the effects of patupilone on [18F]FLT uptake in RIF-1 tumors revealed a significant decrease of tracer uptake after 24h, which strongly negatively correlated with apoptosis. Conclusion: [18F]FLT PET of experimental tumors is a viable complement to [18F]FDG for preclinical drug development. [18F]FLT may be an excellent biomarker for patupilone-induced apoptosi

    Investigations in vivo of the effects of carbogen breathing on 5-fluorouracil pharmacokinetics and physiology of solid rodent tumours

    Get PDF
    Purpose: We have shown previously that carbogen (95% 02, 5% CO2) breathing by rodents can increase uptake of anticancer drugs into tumours. The aim of this study was to extend these observations to other rodent models using the anticancer drug 5-fluorouracil (5FU). 5FU pharmacokinetics in tumour and plasma and physiological effects on the tumour by carbogen were investigated to determine the locus of carbogen action on augmenting tumour uptake of 5FU. Methods: Two different tumour models were used, rat GH3 prolactinomas xenografted s.c. into nude mice and rat H9618a hepatomas grown s.c. in syngeneic Buffalo rats. Uptake and metabolism of 5FU in both tumour models with or without host carbogen breathing was studied non-invasively using fluorine-19 magnetic resonance spectroscopy (19F-MRS), while plasma samples from Buffalo rats were used to construct a NONMEM pharmacokinetic model. Physiological effects of carbogen on tumours were studied using 31P-MRS for energy status (NTP/Pi) and pH, and gradient-recalled echo magnetic resonance imaging (GRE-MRI) for blood flow and oxygenation. Results: In both tumour models, carbogan-induced GRE-MRI signal intensity increases of ∼60% consistent with an increase in tumour blood oxygenation and/or flow. In GH3 xenografts, 19F-MRS showed that carbogen had no significant effect on 5FU uptake and metabolism by the tumours, and 31P-MRS showed there was no change in the NTP/Pi ratio. In H9618a hepatomas, 19F-MRS showed that carbogen had no effect on tumour 5FU uptake but significantly (p=0.0003) increased 5FU elimination from the tumour (i.e. decreased the t1/2) and significantly (p=0.029) increased (53%) the rate of metabolism to cytotoxic fluoronucleotides (FNuct). The pharmacokinetic analysis showed that carbogen increased the rate of tumour uptake of 5FU from the plasma but also increased the rate of removal. 31P-MRS showed there were significant (p≀0.02) increases in the hepatoma NTP/Pi ratio of 49% and transmembrane pH gradient of 0.11 units. Conclusions: We suggest that carbogen can transiently increase tumour blood flow, but this effect alone may not increase uptake of anticancer drugs without a secondary mechanism operating. In the case of the hepatoma, the increase in tumour energy status and pH gradient may be sufficient to augment 5FU metabolism to cytotoxic FNuct, while in the GH3 xenografts this was not the case. Thus carbogen breathing does not universally lead to increased uptake of anticancer drug

    Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3in vivo

    Get PDF
    Background Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. Methods OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. Results Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. Conclusions This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo
    • …
    corecore