18 research outputs found

    Practical Applications and Future Directions of Genetic Code Expansion: Validation of Novel Akt1 Substrates and the Design of a Synthetic Auxotroph Strain of B. subtilis

    Get PDF
    In Chapter 1, site-specifically phosphorylated variants of the oncogene Akt1 were made in Escherichia coli using the orthogonal translation system that enable genetic code expansion with phosphoserine. The differentially phosphorylated variants of Akt1 were used to validate newly predicted Akt1 substrates. The predicted target sites of the peptide substrates were synthesized and subjected to in vitro kinase assays to quantify the activity of each Akt1 phosphorylated variant towards the predicted peptide. A previously uncharacterized kinase-substrate interaction between Akt1 and a peptide derived from RAB11 Family Interacting Protein 2 (RAB11FIP2) was validated in vitro. Chapter 2 describes the preliminary development of a novel orthogonal translation system for Bacillus subtilis. The work presented outlines the design process: from selection of the components to the generation of an all-in-one plasmid containing the orthogonal translation system. The work demonstrates stable integration of the orthogonal translation system into the B. subtilis genome

    Phosphorylation-dependent inhibition of Akt1

    Get PDF
    Protein kinase B (Akt1) is a proto-oncogene that is overactive in most cancers. Akt1 activation requires phosphorylation at Thr308; phosphorylation at Ser473 further enhances catalytic activity. Akt1 activity is also regulated via interactions between the kinase domain and the N-terminal auto-inhibitory pleckstrin homology (PH) domain. As it was previously difficult to produce Akt1 in site-specific phosphorylated forms, the contribution of each activating phosphorylation site to auto-inhibition was unknown. Using a combination of genetic code expansion and in vivo enzymatic phosphorylation, we produced Akt1 variants containing programmed phosphorylation to probe the interplay between Akt1 phosphorylation status and the auto-inhibitory function of the PH domain. Deletion of the PH domain increased the enzyme activity for all three phosphorylated Akt1 variants. For the doubly phosphorylated enzyme, deletion of the PH domain relieved auto-inhibition by 295-fold. We next found that phosphorylation at Ser473 provided resistance to chemical inhibition by Akti-1/2 inhibitor VIII. The Akti-1/2 inhibitor was most effective against pAkt1T308 and showed four-fold decreased potency with Akt1 variants phosphorylated at Ser473. The data highlight the need to design more potent Akt1 inhibitors that are effective against the doubly phosphorylated and most pathogenic form of Akt1

    Phosphorylation-Dependent Inhibition of Akt1

    Get PDF
    Protein kinase B (Akt1) is a proto-oncogene that is overactive in most cancers. Akt1 activation requires phosphorylation at Thr308; phosphorylation at Ser473 further enhances catalytic activity. Akt1 activity is also regulated via interactions between the kinase domain and the N-terminal auto-inhibitory pleckstrin homology (PH) domain. As it was previously difficult to produce Akt1 in site-specific phosphorylated forms, the contribution of each activating phosphorylation site to auto-inhibition was unknown. Using a combination of genetic code expansion and in vivo enzymatic phosphorylation, we produced Akt1 variants containing programmed phosphorylation to probe the interplay between Akt1 phosphorylation status and the auto-inhibitory function of the PH domain. Deletion of the PH domain increased the enzyme activity for all three phosphorylated Akt1 variants. For the doubly phosphorylated enzyme, deletion of the PH domain relieved auto-inhibition by 295-fold. We next found that phosphorylation at Ser473 provided resistance to chemical inhibition by Akti-1/2 inhibitor VIII. The Akti-1/2 inhibitor was most effective against pAkt1T308 and showed four-fold decreased potency with Akt1 variants phosphorylated at Ser473. The data highlight the need to design more potent Akt1 inhibitors that are effective against the doubly phosphorylated and most pathogenic form of Akt1

    Novel Instrumentation for Real-Time Monitoring Using Miniaturized Flow Systems with Integrated Biosensors

    No full text
    A prototype miniaturized Total Chemical Analysis System (μTAS) has been developed and applied to on-line monitoring of glucose and lactate in the core blood of anaesthetized dogs. The system consists of a highly efficient microdialysis sampling interface sited in a small-scale extracorporeal shunt circuit (‘MiniShunt’), a silicon machined microflow manifold and integrated biosensor array for glucose and lactate detection with associated computer software for analytical process control. During in-vivo testing the device allowed real-time on-screen monitoring of glucose and lactate with system response times of less than 5 min, made possible by the small dead volume of the microflow system. On-line glucose and lactate measurements were made in the basal state as well as during intravenous infusion of glucose or lactate. The prototype μTAS is currently suitable for trend monitoring but refinements are necessary before application of the system for determination of individual lactate values

    DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast

    No full text
    Phyllodes tumours and cellular fibroadenomas are both fibroepithelial tumours of the breast. Phyllodes tumours, unlike fibroadenomas, have the ability to recur and metastasise. Although these lesions can be distinguished by their stromal cellularity, mitotic index, presence or absence of stromal overgrowth and cellular atypia, there is overlap and not infrequently a definitive diagnosis cannot be made, particularly on biopsy. We sought to evaluate whether DNA promoter methylation profiling using selected genes known to be methylated in cancer would allow us to learn more about the biology of these tumours, and whether it could identify methylation markers that could differentiate phyllodes tumours from fibroadenomas and/or distinguish phyllodes tumours of different grades. Methylation-sensitive high resolution melting (MS-HRM) was used to screen promoter DNA methylation changes in 86 phyllodes tumours (15 benign, 28 borderline, 43 malignant) and 26 fibroadenomas. A panel of 11 genes (RASSF1A, TWIST1, APC, WIF1, MGMT, MAL, RARβ, CDKN2A, CDH1, TP73 and MLH1) was tested. Methylation status was correlated with histology and with clinicopathological parameters. Five of the gene promoters showed some methylation in a proportion of phyllodes tumours; RASSF1A, 45.3%; TWIST1, 10.7%; APC, 4.1%; WIF1, 2.9% and MGMT, 1.3%. Only two genes showed any methylation in fibroadenomas usually at background levels; RASSF1A, 53.8% and MGMT, 8.3%. No CDKN2A methylation was observed in either tumour type, contrary to previous reports. Overall, the methylation patterns differed little from that which might be seen in normal cells. However, significant levels of methylation of RASSF1A (24.4%) and TWIST1 (7.1%) was observed in some phyllodes tumours. Elevated RASSF1A and/or TWIST1 methylation was significantly associated with phyllodes tumours compared with fibroadenomas (P = 0.02), TWIST1 methylation correlated with increasing malignancy in phyllodes tumours (P < 0.001). In conclusion, assessment of methylation of RASSF1A and TWIST1 may aid in the diagnosis of phyllodes tumours. The absence of frequent methylation in fibroadenomas supports a non-neoplastic origin
    corecore