139 research outputs found

    Four Scottish indulgences at Sens

    Get PDF
    English interest in the great Cistercian abbey of Pontigny was stimulated by the exiles there of two archbishops of Canterbury, Thomas Becket and Stephen Langton.1 As archbishops of Canterbury, Langton and Edmund of Abingdon made gifts to Pontigny abbey in consideration of the welcome given to Becket.2 Edmund did not die at Pontigny, but was a confrater of the community, and the abbot claimed the body, asserting that Edmund had expressed a wish to be buried there. The process of canonisation was rapid.3 After Edmund's canonisation, Henry III sent a chasuble and a chalice for the first celebration of the feast, and granted money to maintain four candles round the saint's shrine.4 In 1254, en route from Gascony to meet Louis IX in Chartres and Paris,5 Henry visited Pontigny, as his brother Richard of Cornwall, who seems to have pressed for canonisation, had done in 1247.6 Archbishop Boniface of Canterbury ordered the celebration of the feast to be observed throughout his province.7 Pope Alexander IV granted a dispensation to allow Englishwomen to enter the precinct of Pontigny abbey on the feast of the translation of the relics of St Edmund8 (women were normally forbidden to enter a Cistercian monastery). Matthew Paris, the greatest English chronicler of the age, wrote a life of the saint.9 English interest continued into the fourteenth century. In 1331 an English priest was given a licence to visit the shrine,10 but it seems likely that the Hundred Years’ War made pilgrimage to Pontigny difficult.11 The indulgences preserved by the abbey reveal an interest in the shrine throughout the Western Church, granted as they were by prelates from Tortosa to Livonia and Estonia, and from Messina to Lübeck.1

    Our friend in the north: the origins, evolution and appeal of the cult of St Duthac of Tain in later Middle Ages

    Get PDF
    St Duthac of Tain was one of the most popular Scottish saints of the later middle ages. From the late fourteenth century until the reformation devotion to Duthac outstripped that of Andrew, Columba, Margaret and Mungo, and Duthac's shrine in Easter Ross became a regular haunt of James IV (1488-1513) and James V (1513-42). Hitherto historians have tacitly accepted the view of David McRoberts that Duthac was one of several local saints whose emergence and popularity in the fifteenth century was part of a wider self-consciously nationalist trend in Scottish religious practice. This study looks beyond the paradigm of nationalism to trace and explain the popularity of St Duthac from the shadowy origins of the cult to its heyday in the early sixteenth century

    Changes in global terrestrial live biomass over the 21st century

    Get PDF
    Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 5.5 PgC year −1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year −1 of gross emissions from disturbances and adding substantially (0.23 to 0.88 PgC year −1 ) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sinkThis study was funded by NASA Interdisciplinary Science Program (NNH16ZDA001N-IDS). M.L. and Y. Yang have been supported by the NASA Postdoctoral Program, administered by Universities Space Research Association under contract with NASA.G.-J.N. was supported by the European Union H2020-VERIFY project (776810)

    A Synoptical Classification of the Bivalvia (Mollusca)

    Get PDF
    The following classification summarizes the suprageneric taxono-my of the Bivalvia for the upcoming revision of the Bivalvia volumes of the Treatise on Invertebrate Paleontology, Part N. The development of this classification began with Carter (1990a), Campbell, Hoeks-tra, and Carter (1995, 1998), Campbell (2000, 2003), and Carter, Campbell, and Campbell (2000, 2006), who, with assistance from the United States National Science Foundation, conducted large-scale morphological phylogenetic analyses of mostly Paleozoic bivalves, as well as molecular phylogenetic analyses of living bivalves. Dur-ing the past several years, their initial phylogenetic framework has been revised and greatly expanded through collaboration with many students of bivalve biology and paleontology, many of whom are coauthors. During this process, all available sources of phylogenetic information, including molecular, anatomical, shell morphological, shell microstructural, bio- and paleobiogeographic as well as strati-graphic, have been integrated into the classification. The more recent sources of phylogenetic information include, but are not limited to, Carter (1990a), Malchus (1990), J. Schneider (1995, 1998a, 1998b, 2002), T. Waller (1998), Hautmann (1999, 2001a, 2001b), Giribet and Wheeler (2002), Giribet and Distel (2003), Dreyer, Steiner, and Harper (2003), Matsumoto (2003), Harper, Dreyer, and Steiner (2006), Kappner and Bieler (2006), Mikkelsen and others (2006), Neulinger and others (2006), Taylor and Glover (2006), Kříž (2007), B. Morton (2007), Taylor, Williams, and Glover (2007), Taylor and others (2007), Giribet (2008), and Kirkendale (2009). This work has also benefited from the nomenclator of bivalve families by Bouchet and Rocroi (2010) and its accompanying classification by Bieler, Carter, and Coan (2010).This classification strives to indicate the most likely phylogenetic position for each taxon. Uncertainty is indicated by a question mark before the name of the taxon. Many of the higher taxa continue to undergo major taxonomic revision. This is especially true for the superfamilies Sphaerioidea and Veneroidea, and the orders Pectinida and Unionida. Because of this state of flux, some parts of the clas-sification represent a compromise between opposing points of view. Placement of the Trigonioidoidea is especially problematic. This Mesozoic superfamily has traditionally been placed in the order Unionida, as a possible derivative of the superfamily Unionoidea (see Cox, 1952; Sha, 1992, 1993; Gu, 1998; Guo, 1998; Bieler, Carter, & Coan, 2010). However, Chen Jin-hua (2009) summarized evi-dence that Trigonioidoidea was derived instead from the superfamily Trigonioidea. Arguments for these alternatives appear equally strong, so we presently list the Trigonioidoidea, with question, under both the Trigoniida and Unionida, with the contents of the superfamily indicated under the Trigoniida.Fil: Carter, Joseph G.. University of North Carolina; Estados UnidosFil: Altaba, Cristian R.. Universidad de las Islas Baleares; EspañaFil: Anderson, Laurie C.. South Dakota School of Mines and Technology; Estados UnidosFil: Araujo, Rafael. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Ciencias Naturales; EspañaFil: Biakov, Alexander S.. Russian Academy of Sciences; RusiaFil: Bogan, Arthur E.. North Carolina State Museum of Natural Sciences; Estados UnidosFil: Campbell, David. Paleontological Research Institution; Estados UnidosFil: Campbell, Matthew. Charleston Southern University; Estados UnidosFil: Chen, Jin Hua. Chinese Academy of Sciences. Nanjing Institute of Geology and Palaeontology; República de ChinaFil: Cope, John C. W.. National Museum of Wales. Department of Geology; Reino UnidoFil: Delvene, Graciela. Instituto Geológico y Minero de España; EspañaFil: Dijkstra, Henk H.. Netherlands Centre for Biodiversity; Países BajosFil: Fang, Zong Jie. Chinese Academy of Sciences; República de ChinaFil: Gardner, Ronald N.. No especifica;Fil: Gavrilova, Vera A.. Russian Geological Research Institute; RusiaFil: Goncharova, Irina A.. Russian Academy of Sciences; RusiaFil: Harries, Peter J.. University of South Florida; Estados UnidosFil: Hartman, Joseph H.. University of North Dakota; Estados UnidosFil: Hautmann, Michael. Paläontologisches Institut und Museum; SuizaFil: Hoeh, Walter R.. Kent State University; Estados UnidosFil: Hylleberg, Jorgen. Institute of Biology; DinamarcaFil: Jiang, Bao Yu. Nanjing University; República de ChinaFil: Johnston, Paul. Mount Royal University; CanadáFil: Kirkendale, Lisa. University Of Wollongong; AustraliaFil: Kleemann, Karl. Universidad de Viena; AustriaFil: Koppka, Jens. Office de la Culture. Section d’Archéologie et Paléontologie; SuizaFil: Kříž, Jiří. Czech Geological Survey. Department of Sedimentary Formations. Lower Palaeozoic Section; República ChecaFil: Machado, Deusana. Universidade Federal do Rio de Janeiro; BrasilFil: Malchus, Nikolaus. Institut Català de Paleontologia; EspañaFil: Márquez Aliaga, Ana. Universidad de Valencia; EspañaFil: Masse, Jean Pierre. Universite de Provence; FranciaFil: McRoberts, Christopher A.. State University of New York at Cortland. Department of Geology; Estados UnidosFil: Middelfart, Peter U.. Australian Museum; AustraliaFil: Mitchell, Simon. The University of the West Indies at Mona; JamaicaFil: Nevesskaja, Lidiya A.. Russian Academy of Sciences; RusiaFil: Özer, Sacit. Dokuz Eylül University; TurquíaFil: Pojeta, John Jr.. National Museum of Natural History; Estados UnidosFil: Polubotko, Inga V.. Russian Geological Research Institute; RusiaFil: Pons, Jose Maria. Universitat Autònoma de Barcelona; EspañaFil: Popov, Sergey. Russian Academy of Sciences; RusiaFil: Sanchez, Teresa Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Sartori, André F.. Field Museum of National History; Estados UnidosFil: Scott, Robert W.. Precision Stratigraphy Associates; Estados UnidosFil: Sey, Irina I.. Russian Geological Research Institute; RusiaFil: Signorelli, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Silantiev, Vladimir V.. Kazan Federal University; RusiaFil: Skelton, Peter W.. Open University. Department of Earth and Environmental Sciences; Reino UnidoFil: Steuber, Thomas. The Petroleum Institute; Emiratos Arabes UnidosFil: Waterhouse, J. Bruce. No especifica;Fil: Wingard, G. Lynn. United States Geological Survey; Estados UnidosFil: Yancey, Thomas. Texas A&M University; Estados Unido

    Wolf Population Regulation Revisited—Again

    Get PDF
    The long-accepted conclusion that wolf density is regulated by nutrition was recently challenged, and the conclusion was reached that, at greater levels of prey biomass, social factors such as intraspecific strife and territoriality tend to regulate wolf density. We reanalyzed the data used in that study for 2 reasons: 1) we disputed the use of 2 data points, and 2) because of recognized heteroscedasticity, we used weighted-regression analysis instead of the unweighted regressions used in the original study. We concluded that the data do not support the hypothesis that wolf densities are regulated by social factors

    THE CATHOLIC DIRECTORY FOR SCOTLAND, 1829-1975

    No full text

    MISCELLANY

    No full text

    PROVOST SKENE'S HOUSE, IN ABERDEEN, AND ITS CATHOLIC CHAPEL

    No full text
    • …
    corecore