79 research outputs found

    From barriers to bridges : tackling the employment problems of Boston's Black youth

    Get PDF
    Thesis (M.C.P.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 1989.Includes bibliographical references (leaves 77-78).by Christine M. McRae.M.C.P

    Effects of Divorce on Mental Health Through the Life Course

    Get PDF
    The long-term effects of divorce on individuals after the transition to adulthood are examined using information from a British birth cohort that has been followed from birth to age 33. Growth-curve models and fixed-effects models are estimated. The results suggest that part of the seeming effect of parental divorce on adults is a result of factors that were present before the parents’ marriages dissolved. But in addition, the results also suggest that there is an effect of the divorce and its aftermath on adult mental health. Moreover, a parental divorce during childhood or adolescence appears to continue to have a negative effect when a person is in his or her twenties and early thirties

    Superconductivity in Li3Ca2C6 intercalated graphite

    Full text link
    In this letter, we report the discovery of superconductivity in Li3Ca2C6. Several graphite intercalation compounds (GICs) with electron donors, are well known as superconductors. It is probably not astonishing, since it is generally admitted that low dimensionality promotes high superconducting transition temperatures. Superconductivity is lacking in pristine graphite, but after charging the graphene planes by intercalation, its electronic properties change considerably and superconducting behaviour can appear. Li3Ca2C6 is a ternary GIC, for which the intercalated sheets are very thick and poly-layered (five lithium layers and two calcium ones). It contains a great amount of metal (five metallic atoms for six carbon ones). Its critical temperature of 11.15 K is very close to that of CaC6 GIC (11.5 K). Both CaC6 and Li3Ca2C6 GICs possess currently the highest transition temperatures among all the GICs.Comment: 5 pages, 3 figure

    Differential production of type I IFN determines the reciprocal levels of IL-10 and proinflammatory cytokines produced by C57BL/6 and BALB/c macrophages

    Get PDF
    Pattern recognition receptors detect microbial products and induce cytokines, which shape the immunological response. IL-12, TNF-alpha, and IL-1 beta are proinflammatory cytokines, which are essential for resistance against infection, but when produced at high levels they may contribute to immunopathology. In contrast, IL-10 is an immunosuppressive cytokine, which dampens proinflammatory responses, but it can also lead to defective pathogen clearance. The regulation of these cytokines is therefore central to the generation of an effective but balanced immune response. In this study, we show that macrophages derived from C57BL/6 mice produce low levels of IL-12, TNF-alpha, and IL-1 beta, but high levels of IL-10, in response to TLR4 and TLR2 ligands LPS and Pam3CSK4, as well as Burkholderia pseudomallei, a Gram-negative bacterium that activates TLR2/4. In contrast, macrophages derived from BALB/c mice show a reciprocal pattern of cytokine production. Differential production of IL-10 in B. pseudomallei and LPS-stimulated C57BL/6 and BALB/c macrophages was due to a type I IFN and ERK1/2-dependent, but IL-27-independent, mechanism. Enhanced type I IFN expression in LPS-stimulated C57BL/6 macrophages was accompanied by increased STAT1 and IFN regulatory factor 3 activation. Furthermore, type I IFN contributed to differential IL-1 beta and IL-12 production in B. pseudomallei and LPS-stimulated C57BL/6 and BALB/c macrophages via both IL-10-dependent and -independent mechanisms. These findings highlight key pathways responsible for the regulation of pro- and anti-inflammatory cytokines in macrophages and reveal how they may differ according to the genetic background of the host.his work was supported by The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001126), the U.K. Medical Research Council (FC001126), and the Wellcome Trust (FC001126) since April 1, 2015 and before that by U.K. Medical Research Council Grant MRC U117565642 and also by European Research Council Grant 294682-TB-PATH (Crick 10127). A.H. was additionally funded by a U.K. Medical Research Council Centenary Award. M.S. was funded by Fundação para a Ciência e Tecnologia, Portugal Grant FCT-ANR/BIM-MEC/ 0007/2013. M.S. is an associate Fundação para a Ciência e Tecnologia, Portugal investigator.info:eu-repo/semantics/publishedVersio

    Criteria for the Hiring and Retention of Visual Resources Professionals

    Get PDF
    Criteria for the hiring of visual resources professionals adopted by both the Visual Resources Association and the Art Libraries Association of North America. Available in English, French, and Spanish

    Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach

    Get PDF
    Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases

    Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture

    Get PDF
    © 2020, The Author(s). Genetic association studies have identified 44 common genome-wide significant risk loci for late-onset Alzheimer’s disease (LOAD). However, LOAD genetic architecture and prediction are unclear. Here we estimate the optimal P-threshold (Poptimal) of a genetic risk score (GRS) for prediction of LOAD in three independent datasets comprising 676 cases and 35,675 family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction is maximised when selecting a small number of SNPs. Both simulation results and direct estimation indicate that the number of causal common SNPs for LOAD may be less than 100, suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately 75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds when compared to those in the bottom decile. In addition, 14 variants are identified that contribute to both LOAD risk and age at onset of LOAD

    Complement Factor H-Related Proteins CFHR2 and CFHR5 Represent Novel Ligands for the Infection-Associated CRASP Proteins of Borrelia burgdorferi

    Get PDF
    Background: One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi. Methodology/Principal Findings: To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement. Conclusions/Significance: In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology
    corecore