23 research outputs found
Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments
[EN] Radio-frequency thermokeratoplasty (RF-TKP) is a technique used to reshape the cornea curvature by means of thermal lesions using radio-frequency currents. This curvature change allows refractive disorders such as hyperopia to be corrected. A new electrode with ring geometry is proposed for RF-TKP. It was designed to create a single thermal lesion with a full-circle shape. Finite element models were developed, and the temperature distributions in the cornea were analysed for different ring electrode characteristics. The computer results indicated that the maximum temperature in the cornea was located in the vicinity of the ring electrode outer perimeter, and that the lesions had a semi-torus shape. The results also indicated that the electrode thickness, electrode radius and electrode thermal conductivity had a significant influence on the temperature distributions. In addition, in vitro experiments were performed on rabbit eyes. At 5 IN power the lesions were fully circular. Some lesions showed non-uniform characteristics along their circular path. Lesion depth depended on heating duration (60% of corneal thickness for 20s, and 30% for 10s). The results suggest that the critical shrinkage temperature (55-63degreesC) was reached at the central stroma and along the entire circular path in all the cases.Berjano, E.; Saiz Rodríguez, FJ.; Alió, J.; Ferrero, JM. (2003). Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments. Medical & Biological Engineering & Computing. 41(6):630-639. https://doi.org/10.1007/BF02349970S630639416Alió, J. L., Ismail, M. M., Artola, A., andPérez-Santonja, J. J. (1997a): ‘Correction of hyperopia induced by photorefractive keratectomy using non-contact Ho: YAG laser thermal keratoplasty’,J. Refract. Surg.,13, pp. 13–16Alió, J. L., Ismail, M. M., andSanchez, J. L. (1997b): ‘Correction of hyperopia with non-contact Ho: YAG laser thermal keratoplasty’,J. Refract. Surg.,13, pp. 17–22Alió, J. L., andPérez-Santonja, J. J. (1999): ‘Correction of hyperopia by laser thermokeratoplasty (LTK)’ inPallikaris, I., andAgarwal, S. (Eds): ‘Refractive Surgery’ (Jaypee Brothers Medical Publishers Ltd, New Delhi, 1999), pp. 583–591Alió, J. L., andPérez-Santonja, J. J. (2002): ‘Correction of hyperopia by laser thermokeratoplasty (LTK)’ inAgarwal, S., Agarwal, A., Apple, D. J., Buratto, L., Alió, J. L., Pandey, S. K., andAgarwal, A. (Eds): ‘Textbook of ophthalmology’ (Lippincott Williams & Wilkins, Philadelphia, 2002), pp. 1331–1337Ayala, M. J., Alió, J. L., Ismail, M. M., andSánchez-Castro, J. M. (2000): ‘Experimental corneal histological study after thermokeratoplasty with holmium laser’,Arch. Soc. Esp. Oftalmol.,75, pp. 619–626Asbell, P. A., Maloney, R. K., Davidorf, J., Hersh, P., McDonald, M., Manche, E., andConductive Keratoplasty Study Group (2001): ‘Conductive keratoplasty for the correction of hyperopia’,Tr. Am. Ophtalmol. Soc.,99, pp. 79–87Avitall, B., Mughal, K., Hare, J., Helms, R., andKrum, D. (1997): ‘The effects of electrode-tissue contact on radiofrequency lesion generation’PACE,20, pp. 2899–2910Avitall, B., Helms, R. W., Koblish, J. B., Sieben, W., Kotov, A. V., andGupta, G. N. (1999): ‘The creation of linear contiguous lesions in the atria with an expandable loop catheter’,J. Am. Coll. Cardiol.,33, pp. 972–984Berjano, E. J., Saiz, J., andFerrero, J. M. (2002): ‘Radio-frequency heating of the cornea: Theoretical model andin vitro experiments’,IEEE Trans. Biomed. Eng.,49, pp. 196–205Brickmann, R., Kampmeier, J., Grotehusmann, U., Vogel, A., Koop, N., Asiyo-Vogel, M., Kamm, K., andBirngruber, R. (1996): ‘Corneal collagen denaturation in laserthermokeratoplasty’,SPIE Proc.,2681, pp. 56–63Choi, B., Kim, J., Welch, A. J., andPearce, J. A. (2002): ‘Dynamic impedance measurements during radio-frequency heating of cornea’,IEEE Trans. Biomed. Eng.,49, pp. 1610–1616Curley, M. G., andHamilton, P. S. (1997): ‘Creation of large thermal lesions in liver using saline-enhanced RF ablation’. Proc. 19th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., Chicago, pp. 2516–2519Doss, J. D., andAlbillar, J. I. (1980): ‘A technique for the selective heating of corneal stroma’,Contact Intraocular Lens Med.,6, pp. 13–17Doss, J. D. (1982): ‘Calculation of electric fields in conductive media’,Med. Phys.,9(4), pp. 566–573Gruenberg, P., Manning, W., Miller, D. andOlson, W. (1981): ‘Increase in rabbit corneal curvature by heated ring application’,Ann. Ophthalmol.,13, pp. 67–70Hata, C., andRaymond Chia, W.-K. (2001): ‘Catheter for circular tissue ablation and methods thereof’. US Patent 2001/0044625 A1Jain, M. K., andWolf, P. D. (1998): ‘Effect of electrode contact on lesion growth during temperature controlled radiofrequency ablation’, Proc. 20th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. Hong Kong (IEEE, Piscataway NJ) pp. 245–247Jain, M. K., andWolf, P. D. (1999): ‘Temperature controlled and constant power radiofrequency ablation: what affects lesion growth?’,IEEE Trans. Biomed. Eng.,46, pp. 1405–1412Krasteva, V. Tz., andPapazov, S. P. (2002): ‘Estimation of current density distribution under electrodes for external defibrillation’,Biomed. Eng. OnLine,1, 7Labonté, S. (1992): ‘A theoretical study of radio-frequency ablation of the myocardium’,PhD dissertation, Department of Electrical Engineering, University of Ottawa, CanadaLabonté, S. (1994): ‘Numerical model for radio-frequency ablation of the endocardium and its experimental validation’,IEEE Trans. Biomed. Eng.,41, pp. 108–115Mannis, M. J., Segal, W. A., andDarlington, J. K. (2001): ‘Making sense of refractive surgery in 2001: Why, when, for whom, and by whom?’,Mayo Clin. Proc.,76, pp. 823–829McCally, R. L., Bargeron, R. A., andGreen, W. R. (1983): ‘Stromal damage in rabbit corneas exposed to CO2 laser radiation’,Exp. Eye Res.,37, pp. 543–550McDonald, M. B., Hersh, P. S., Manche, E. E., Maloney, R. K., Davidorf, J., andSabry, M. (2002): ‘Conductive keratoplasty for the correction of low to moderate hyperopia: U.S. clinical trial 1-year results on 355 eyes’,Ophthalmol.,109, pp. 1978–1989McRury, I. D., Mitchell, M. A., Panescu, D. andHaines, D. E. (1997): ‘Non-uniform heating during radiofrequency ablation with long electrodes: monitoring the edge effect’,Circ.,96, pp. 4057–4064Méndez-g, A., andMéndez-Noble, A. (1997): ‘Conductive keratoplasty of the correction of hyperopia’ inSher, N. A. (Ed.) ‘Surgery for hyperopia and presbyopia’ (Williams & Wilkins, Baltimore, 1997), pp. 163–171Miller, D., andManning, W.J. (1978): ‘Alterations in curvature of bovine cornea using heated rings’,Invest. Ophthalmol., p. 297Mirotznik, M. S., andSchwartzman, D. (1996): ‘Nonuniform heating patterns of commercial electrodes for radiofrequency catheter ablation’,J. Cardiovasc. Electrophysiol.,7, pp. 1058–1062Nakagawa, H., Yamanashi, W. S., Pitha, J. V., Arruda, M., Wang, X., Ohtomo, K., Beckman, K. J., McClelland, J. H., Lazzara, R., andJackman, W. M. (1995): ‘Comparison ofin vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation’,Circ.,91, pp. 2264–2273Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., andWebster, J. G. (1995): ‘Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation’,IEEE Trans. Biomed. Eng.,42, pp. 879–890Plonsey, R., andHeppner, D. B. (1967): ‘Considerations of quasistationarity in electrophysiological systems’,Bull. Math. Biophys.,29, pp. 657–664Rowsey, J. J. (1987): ‘Electrosurgical keratoplasty: Update and retraction’,Invest. Ophthalmol. Vis. Sci.,28, p. 224Rutzen, A. R., Roberts, C. W., Driller, J., Gomez, D., Lucas, B. C., Lizzi, F. L., andColeman, D. J. (1990): ‘Production of corneal lesions using high-intensity focused ultrasound’,Cornea,9, pp. 324–330Schwan, H. P., andFoster, K. R. (1980): ‘RF-fields interactions with biological systems: electrical properties and biophysical mechanism’,Proc. IEEE,68, pp. 104–113Seiler, T., Matallana, M., andBende, T. (1990): ‘Laser thermokeratoplasty by means of a pulsed Holmium:YAG Laser for the hyperopic correction’,Refrac. Corneal Surg.,6, pp. 335–339Silvestrini, T. A. (1998): ‘Electrosurgical procedure for the treatment of the cornea’. US Patent 5,766,171Simmons, W. N., Mackey, S., He, D. S. andMarcus, F. L. (1996): ‘Comparison of gold versus platinum electrodes on myocardial lesion size using radiofrequency energy’,PACE,19, pp. 398–402Stringer, H., andParr, J. (1964): ‘Shrinkage temperature of eye collagen’,Nature,204, p. 1307Trembly, B. S., andKeates, R. H. (1991): ‘Combined microwave heating and surface cooling of the cornea’,IEEE Trans. Biomed. Eng.,38, pp. 85–91Trembly, B. S., Hashizume, N., Moodie, K. L., Cohen, K. L., Tripoli, N. K., andHoopes, P. J. (2001): ‘Microwave thermal keratoplasty for myopia: keratoscopic evaluation in porcine eyes’,J. Refract. Surg.,17, pp. 682–688Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., andWebster, J. G. (2000): ‘Thermal-electrical finite element modelling for radio frequency cardiac ablation: effects of changes in myocardial properties’,Med. Biol. Eng. Comput.,38, pp. 562–568Wiley, J. D., andWebster, J. G. (1982): ‘Analysis and control of the current distribution under circular dispersive electrodes’,IEEE Trans. Biomed. Eng,29, pp. 381–38
Remote magnetic versus manual catheters: evaluation of ablation effect in atrial fibrillation by myocardial marker levels
Background A remote magnetic navigation (MN) system is available for radiofrequency ablation of atrial fibrillation (AF), challenging the conventional manual ablation technique. The myocardial markers were measured to compare the effects of the two types of MN catheters with those of a manual-irrigated catheter in AF ablation. Methods AF patients underwent an ablation procedure using either a conventional manual-irrigated catheter (CIR, n=65) or an MN system utilizing either an irrigated (RMI, n=23) or non-irrigated catheter (RMN, n=26). Levels of troponin T (TnT) and the cardiac isoform of creatin kinase (CKMB) were measured before and after ablation. Results Mean procedure times and total ablation times were longer employing the remote magnetic system. In all groups, there were pronounced increases in markers of myocardial injury after ablation, demonstrating a significant correlation between total ablation time and post-ablation levels of TnT and CKMB (CIR r=0.61 and 0.53, p<0.001; RMI r=0.74 and 0.73, p<0.001; and RMN r=0.51 and 0.59, p<0.01). Time-corrected release of TnT was significantly higher in the CIR group than in the other groups. Of the patients, 59.6% were free from AF at follow-up (12.2± 5.4 months) and there were no differences in success rate between the three groups. Conclusions Remote magnetic catheters may create more discrete and predictable ablation lesions measured by myocardial enzymes and may require longer total ablation time to reach the procedural endpoints. Remote magnetic non-irrigated catheters do not appear to be inferior to magnetic irrigated catheters in terms of myocardial enzyme release and clinical outcome
Intestinal strongyloidiasis and hyperinfection syndrome
In spite of recent advances with experiments on animal models, strongyloidiasis, an infection caused by the nematode parasite Strongyloides stercoralis, has still been an elusive disease. Though endemic in some developing countries, strongyloidiasis still poses a threat to the developed world. Due to the peculiar but characteristic features of autoinfection, hyperinfection syndrome involving only pulmonary and gastrointestinal systems, and disseminated infection with involvement of other organs, strongyloidiasis needs special attention by the physician, especially one serving patients in areas endemic for strongyloidiasis. Strongyloidiasis can occur without any symptoms, or as a potentially fatal hyperinfection or disseminated infection. Th(2 )cell-mediated immunity, humoral immunity and mucosal immunity have been shown to have protective effects against this parasitic infection especially in animal models. Any factors that suppress these mechanisms (such as intercurrent immune suppression or glucocorticoid therapy) could potentially trigger hyperinfection or disseminated infection which could be fatal. Even with the recent advances in laboratory tests, strongyloidiasis is still difficult to diagnose. But once diagnosed, the disease can be treated effectively with antihelminthic drugs like Ivermectin. This review article summarizes a case of strongyloidiasis and various aspects of strongyloidiasis, with emphasis on epidemiology, life cycle of Strongyloides stercoralis, clinical manifestations of the disease, corticosteroids and strongyloidiasis, diagnostic aspects of the disease, various host defense pathways against strongyloidiasis, and available treatment options
Effect of soothing techniques on infants’ self-regulation behaviors (sleeping, crying, feeding): A randomized controlled study
###EgeUn###Aim: To determine the effect of teaching 4S soothing techniques (swaddling, holding at side or stomach position, shushing-white noise, swinging) on parent-reported infants’ self-regulation behaviors with respect to sleeping, crying, and feeding. Methods: This research is a pretest–post-test, single-blind randomized experimental study with 6 month follow-ups. An intervention group (IG) and a control group (CG) were formed, each consisting of 21 mother–infant dyads. A 90 min training program was applied to the mothers in the IG during the home visit in the fourth week after birth. For both groups, the dependent variables of the study are the parent-reported self-regulation behaviors of the infants in weeks 3, 7, 11, and 23. Results: No significant difference was found between the two groups before the intervention in the pretest in terms of the mean sleep duration, mean crying duration, frequency of feeding, and frequency of waking at night. After the teaching of the 4S soothing techniques had been conducted, it was determined that the mean frequency of waking at night, the mean frequency of daily feeding, and the mean daily crying duration of the infants in the IG was statistically significantly lower in all follow-ups, compared to the infants in the CG. In weeks 7 and 11 after the intervention, the mean daily sleep duration of the infants in the IG was found to be statistically significantly higher, compared to the infants in the CG. Conclusion: Health professionals can use the 4S soothing techniques to develop self-regulation behaviors of infants during the first 12 weeks of the infancy period. © 2019 Japan Academy of Nursing Scienc