7 research outputs found

    AtPDS overexpression in tomato : exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content

    No full text
    The regulation of plant carotenogenesis is an active research area for both biological discovery and practical implementation. In tomato (Solanum lycopersicum), we demonstrate additional bottlenecks exist in the poly-cis-transformation of phytoene to lycopene in the context of ripening-induced PSY1 expression and activity and reveal phytoene desaturase (PDS), as a target for manipulation towards elevated lycopene content in maturing tomato fruit. Overexpression of Arabidopsis PDS, AtPDS, elevated PDS transcript abundance in all aerial tissues resulting in both altered carotenoid accumulation and associated pathway gene expression in a tissue-specific manner. Significant increases in downstream carotenoids (all-trans-lycopene and b-carotene) and minimal changes in carotenogenic gene expression (carotenoid isomerase-like 1, CRTIL1) suggest overexpression of heterologous AtPDS in tomato circumvents endogenous regulatory mechanism observed with previous strategies. In transgenic leaves, depletion of the PDS substrate, phytoene, was accompanied by minor, but significant increases in xanthophyll production. Alterations in the leaf carotenogenic transcript profile, including the upstream MEP pathway, were observed revealing unique feedback and feedforward regulatory mechanisms in response to AtPDS overexpression. AtPDS overexpression in the background of the tangerine (carotenoid isomerase, CRTISO) mutant exposes its potential in elevating downstream cislycopene accumulation in ripe tomato fruit, as cis-lycopene is more bioavailable yet less abundant than all-trans-lycopene in the wild-type control. In summary, we demonstrate the limitation of PDS in ripening fruit, its utility in modifying carotenoid profiles towards improved quality, and reveal novel carotenoid pathway feedback regulation

    Synthesis and function of apocarotenoid signals in plants

    No full text
    In plants, carotenoids are essential for photosynthesis and photoprotection. However, carotenoids are not the end products of the pathway; apocarotenoids are produced by carotenoid cleavage dioxygenases (CCDs) or non-enzymatic processes. Apocarotenoids are more soluble or volatile than carotenoids but they are not simply breakdown products, as there can be modifications postcleavage and their functions include hormones, volatiles, and signals. Evidence is emerging for a class of apocarotenoids, here referred to as apocarotenoid signals (ACSs), that have regulatory roles throughout plant development beyond those ascribed to abscisic acid (ABA) and strigolactone (SL). In this context we review studies of carotenoid feedback regulation, chloroplast biogenesis, stress signaling, and leaf and root development providing evidence that apocarotenoids may fine-tune plant development and responses to environmental stimuli

    Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening

    Get PDF
    Spontaneous mutations in fruit-specific carotenoid biosynthetic genes of tomato (Solanum lycopersicum) have led to improved understanding of ripening-associated carotenogenesis. Here, we confirm that ZDS is encoded by a single gene in tomato transcriptionally regulated by ripening transcription factors RIN, NOR and ethylene. Manipulation of ZDS was achieved through transgenic repression and heterologous over-expression in tomato. CaMV 35S-driven RNAi repression inhibited carotenoid biosynthesis in all aerial tissues examined resulting in elevated levels of f-carotene isomers and upstream carotenoids, while downstream all trans-lycopene and subsequent photoprotective carotenes and xanthophylls were diminished. Consequently, immature fruit displayed photo-bleaching consistent with reduced levels of the photoprotective carotenes and developmental phenotypes related to a reduction in the carotenoid-derived phytohormone abscisic acid (ABA). ZDS-repressed ripe fruit was devoid of the characteristic red carotenoid, all trans-lycopene and displayed brilliant yellow pigmentation due to elevated 9,90 dicis-f-carotene. Over-expression of the Arabidopsis thaliana ZDS (AtZDS) gene bypassed endogenous co-suppression and revealed ZDS as an additional bottleneck in ripening-associated carotenogenesis of tomato. Quantitation of carotenoids in addition to multiple ripening parameters in ZDS-altered lines and ABA-deficient fruit-specific carotenoid mutants was used to separate phenotypic consequences of ABA from other effects of ZDS manipulation and reveal a unique and dynamic f-carotene isomer profile in ripe fruit

    Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis

    No full text
    Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2-C-methyl-D-erythritol-4-phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map-based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways

    Deregulation of ζ-carotene desaturase in Arabidopsis and tomato exposes a unique carotenoid-derived redundant regulation of floral meristem identity and function

    No full text
    A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3)

    Deconvoluting apocarotenoid-mediated retrograde signaling networks regulating plastid translation and leaf development

    No full text
    Signals originating within plastids modulate organelle differentiation by transcriptionally regulating nuclear-encoded genes. These retrograde signals are also integral regulators of plant development, including leaf morphology. The clb5 mutant displays severe leaf morphology defects due to Apocarotenoid Signal 1 (ACS1) accumulation in the developmentally arrested plastid. Transcriptomic analysis of clb5 validates that ACS1 accumulation deregulates hundreds of nuclear genes, including the suppression of most genes encoding plastid ribosomal proteins. Herein, we order the molecular events causing the leaf phenotype associated with the accumulation of ACS1, which includes two consecutive retrograde signaling cascades. Firstly, ACS1 originating in the plastid drives inhibition of plastid translation (IPT) via nuclear transcriptome remodeling of chlororibosomal proteins, requiring light as an essential component. Subsequently, IPT results in leaf morphological defects via a GUN1-dependent pathway shared with seedlings undergoing chemical IPT treatments and is restricted to an early window of the leaf development. Collectively, this work advances our understanding of the complexity within plastid retrograde signaling exemplified by sequential signal exchange and consequences that in a particular temporal and spatial context contribute to the modulation of leaf development

    A GDSL esterase/lipase catalyzes the esterification of lutein in bread wheat

    Get PDF
    Xanthophylls are a class of carotenoids that are important micronutrients for humans. They are often found esterified with fatty acids in fruits, vegetables, and certain grains, including bread wheat (Triticum aestivum). Esterification promotes the sequestration and accumulation of carotenoids, thereby enhancing stability, particularly in tissues such as in harvested wheat grain. Here, we report on a plant xanthophyll acyltransferase (XAT) that is both necessary and sufficient for xanthophyll esterification in bread wheat grain. XAT contains a canonical Gly-Asp-Ser-Leu (GDSL) motif and is encoded by a member of the GDSL esterase/lipase gene family. Genetic evidence from allelic variants of wheat and transgenic rice (Oryza sativa) calli demonstrated that XAT catalyzes the formation of xanthophyll esters. XAT has broad substrate specificity and can esterify lutein, b-cryptoxanthin, and zeaxanthin using multiple acyl donors, yet it has a preference for triacylglycerides, indicating that the enzyme acts via transesterification. A conserved amino acid, Ser-37, is required for activity. Despite xanthophylls being synthesized in plastids, XAT accumulated in the apoplast. Based on analysis of substrate preferences and xanthophyll ester formation in vitro and in vivo using xanthophyll-accumulating rice callus, we propose that disintegration of the cellular structure during wheat grain desiccation facilitates access to lutein-promoting transesterification
    corecore