6,803 research outputs found

    Performance Of Third Harmonic Ground Fault Protection Schemes For Generator Stator Windings

    Get PDF
    The paper shows how the normally generated third-harmonic voltage can be used to protect the lower ten to twenty percent of generator stator windings against ground faults. A method of determining the applicability of the scheme to a given machine is described which takes into account the design of the generator and its externally connected apparatus. The effects of finite resistence ground faults are also investigated and other advantages of the scheme, such as protection of the neutral, are also highlighted. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc

    Techno-economic evaluation of reducing shielding gas consumption in GMAW whilst maintaining weld quality

    Get PDF
    A new method of supplying shielding gases in an alternating manner has been developed to enhance the efficiency of conventional gas metal arc welding (GMAW). However, the available literature on this advanced joining process is very sparse and no cost evaluation has been reported to date. In simple terms, the new method involves discretely supplying two different shielding gases to the weld pool at predetermined frequencies which creates a dynamic action within the liquid pool. In order to assess the potential benefits of this new method from a technical and cost perspective, a comparison has been drawn between the standard shielding gas composition of Ar/20%CO2, which is commonly used in UK and European shipbuilding industries for carbon steels, and a range of four different frequencies alternating between Ar/20%CO2 and helium. The beneficial effects of supplying the weld shielding gases in an alternating manner were found to provide attractive benefits for the manufacturing community. For example, the present study showed that compared with conventional GMAW, a 17 per cent reduction in total welding cost was achieved in the case of the alternating gas method and savings associated with a reduction in the extent of post-weld straightening following plate distortion were also identified. Also, the mechanical properties of the alternating case highlighted some marginal improvements in strength and Charpy impact toughness which were attributed to a more refined weld microstructure

    Light scattering and phase behavior of Lysozyme-PEG mixtures

    Full text link
    Measurements of liquid-liquid phase transition temperatures (cloud points) of mixtures of a protein (lysozyme) and a polymer, poly(ethylene glycol) (PEG) show that the addition of low molecular weight PEG stabilizes the mixture whereas high molecular weight PEG was destabilizing. We demonstrate that this behavior is inconsistent with an entropic depletion interaction between lysozyme and PEG and suggest that an energetic attraction between lysozyme and PEG is responsible. In order to independently characterize the lysozyme/PEG interactions, light scattering experiments on the same mixtures were performed to measure second and third virial coefficients. These measurements indicate that PEG induces repulsion between lysozyme molecules, contrary to the depletion prediction. Furthermore, it is shown that third virial terms must be included in the mixture's free energy in order to qualitatively capture our cloud point and light scattering data. The light scattering results were consistent with the cloud point measurements and indicate that attractions do exist between lysozyme and PEG.Comment: 5 pages, 2 figures, 1 tabl

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 48−52^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure

    Theory and simulation of short-range models of globular protein solutions

    Full text link
    We report theoretical and simulation studies of phase coexistence in model globular protein solutions, based on short-range, central, pair potential representations of the interaction among macro-particles. After reviewing our previous investigations of hard-core Yukawa and generalised Lennard-Jones potentials, we report more recent results obtained within a DLVO-like description of lysozyme solutions in water and added salt. We show that a one-parameter fit of this model based on Static Light Scattering and Self-Interaction Chromatography data in the dilute protein regime, yields demixing and crystallization curves in good agreement with experimental protein-rich/protein-poor and solubility envelopes. The dependence of cloud and solubility points temperature of the model on the ionic strength is also investigated. Our findings highlight the minimal assumptions on the properties of the microscopic interaction sufficient for a satisfactory reproduction of the phase diagram topology of globular protein solutions.Comment: 17 pages, 8 figures, Proc. of Conference "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina (ITALY) 17-20 December 200

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p′)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p′)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    ‘Play it by ear’ – teachers’ responses to ear-playing tasks during one to one instrumental lessons

    Get PDF
    This paper reports findings from the Ear Playing Project (EPP) in relation to the teaching strategies that 15 instrumental teachers adopted during one-to-one instrumental lessons whilst helping their students to copy music by ear from a recording. Overall, the teachers used a variety of strategies including singing and humming along with or without the recording, asking questions, and giving verbal explanation and positive feedback. By the end of the project the teachers indicated that the project showed them a new and enjoyable way to introduce aural-training tasks, it helped them develop their own confidence in ear-playing and it gave them the opportunity to observe and assess their students’ needs more carefully. The benefits for the students included greater enjoyment during instrumental lessons, development of aural and improvisation skills and greater confidence in instrumental playing
    • …
    corecore