114 research outputs found

    Investigating the post-collisional reorganisation of the Eastern Alps using a 4D reconstruction

    Get PDF
    In Neogene time, the Eastern Alps underwent a profound post-collisional tectonic reorganisation. This featured indentation of the Alpine orogenic wedge by the Adriatic upper plate, eastward lateral extrusion between conjugate strike-slip faults, and a shift from thrust propagation on the European lower plate to the Adriatic upper plate, accreting the eastern South Alps fold-thrust belt. The triggers and driving forces of this tectonic reorganisation remain hotly debated. We present new sequentially restored orogen-scale cross sections along the TRANSALP (12°E) and EASI (13.3°E) transects, plus an E-W orogen-parallel section (46.5°E) to investigate the kinematic evolution of the Neogene tectonic reorganisation in 4D. These transects were affected by eastward lateral extrusion, and so we used a map-view reconstruction to restore out-of-section transport of rock at the onset of rapid extrusion (23 Ma), and the onset of thick-skinned thrusting in the eastern South Alps fold-thrust belt (14 Ma). We then compared our results with Vp LET and teleseismic models of the crust and upper mantle. The geologic record reveals two phases of indentation in the Tauern Window: (Phase 1, 23-14 Ma) The Adriatic crust acted as a coherent indenter, with northward motion relative to Europe accommodated by shortening within the Eastern Alps orogenic wedge as well as sinistral motion along the Giudicarie Fault. Initially, upright folding of Penninic units, including the Venediger nappes, in the Tauern Window accommodated most shortening, but by middle Miocene time, eastward lateral extrusion of the entire metamorphic edifice and NCA was the primary mechanism accommodating N-S shortening. This shortening required ongoing subduction of the European lithosphere, ruling out previous models involving north-dipping Adriatic subduction. A purported detachment below the Venediger Duplex is inferred to have served as the base of the laterally extruding wedge, which comprised the previously subducted and exhumed European crust. (Phase 2, 14 Ma-Present): Since the middle Miocene, the leading edge of the Adriatic indenter has been deforming, forming the thick-skinned South Alps fold-thrust belt. The onset of S-directed shortening is recorded by Langhian-Serravallian rocks beneath the Valsugana Thrust. In contrast, the Adriatic lower crust of the fold-thrust belt was decoupled and transported northwards into the orogenic wedge. In the TRANSALP section, the European lithospheric mantle currently extends beneath the orogenic wedge, whereas in the EASI section the subducted European lithosphere has detached. The Adriatic lower crust indented the deeply buried equivalents of the European Venediger rocks exposed in the Tauern Window. A high-velocity (6.8-7.25 km/s) bulge in LET models of the TRANSALP section images this indenter, and possibly includes accreted European lower crust. We find that when the European slab detached beneath the Eastern Alps, shortening, exhumation, and lateral extrusion of the Eastern Alps orogenic wedge became increasingly important in accommodating Adria-Europe convergence. This culminated in the accretion of the South Alps which now forms the southern part of the orogenic wedge and primarily accommodates ongoing convergence. We note that in the E-W orogen-parallel section, a vertical gap within the slab anomaly, interpreted as a horizontal slab detachment, occurs east of the western boundary of the Tauern Window and the north projection of the Giudicarie Fault. Slab detachment (Handy et al., this volume) is an appealing explanation for the Neogene evolution by eliminating slab pull and redirecting the shortening into the south part of the orogenic wedge

    A new 4D model of Alpine orogenesis based on AlpArray

    Get PDF
    Wholesale slab breakoff or detachment in the Alps in late Paleogene time has been invoked to explain Periadriatic calc-alkaline magmatism (43-29 Ma), rapid exhumation of HP metamorphics, as well as clastic infill of proximal parts of the Alpine Molasse basin (30-28 Ma). However, the 14 My timespan of these events exceeds the duration of slab detachment estimated from thermomechanical modelling (2-8 My) and from foreland depocenter migration (~5 My) along equivalent lengths of neighboring Alpine orogens with torn slabs (Carpathians, Apennines). Moreover, wholesale slab detachment does not explain major E-W differences in Neogene crustal structure, basin evolution, erosion and indentation in the Alps. Teleseismic Vp tomography from AlpArray suggests that the slab segment beneath the Central Alps comprises European lithosphere, is attached to its orogenic lithosphere and extends down to ~250 km depth, in parts possibly even to the Mantle Transition Zone (Fig. 1). This marks a first phase of partial slab detachment, probably in late Paleogene time based on comparing slab length with shortening in the C. Alps and of Adria-Europe convergence since 35 Ma. In contrast, the slab segment beneath the Eastern Alps is detached between 80-150 km depth. The age of this second phase of slab detachment is bracketed at 23-19 Ma by criteria below and by comparing vertical detachment distance with global slab sink rates. We propose a new model of Alpine mountain-building that features the northward motion of subduction singularities above delaminating and detaching Alpine slab segments, respectively in the C. and E. Alps (Fig. 2), to explain the aforementioned E-W differences in Oligo-Miocene structure, magmatism, and foreland sedimentation. Mountain-building began at ~35 Ma with a decrease in Adria-Europe convergence to <1cm/yr collision, causing the European slab to steepen and detach beneath both the Central and Eastern Alps. Periadriatic magmatism may have initiated prior to slab detachment due to fluxing of the cold mantle wedge by fluids from devolatilizing crust along the steepened Alpine slab. Thereafter, the Central and Eastern Alps evolved separately (Fig. 2). Northward motion of the singularity during slab delamination in the Central Alps increased both horizontal shortening and the taper angle of the orogenic wedge, with rapid exhumation and denudation in the retro-wedge. Slab steepening and delamination are inferred to have been more pronounced in the Eastern Alps, possibly due to the greater negative buoyancy of the slab in the absence of Brianconnais continental lithosphere in the eastern part of Alpine Tethys. The delaminating slab in the east drove subsidence and continued marine sedimentation in the E. Molasse basin from 29-19 Ma, while the western part of the basin in the C. Alps filled with terrigeneous sediments. Slab detachment beneath the E. Alps at ~20 Ma coincided broadly with several dramatic events within only 5 Ma (23-17 Ma): (1) a switch from advance of the northern thrust front to indentation of the E. Alps by the eastern S. Alps along the sinistral Giudicarie Fault; (2) rapid exhumation of Penninic nappes in the core of the orogen (Tauern Window) and orogen-parallel escape of orogenic crust toward the Pannonian Basin; (3) rapid filling of the E. Molasse basin. These events are attributed to a northward and upward shift of the singularity to within the orogenic crust during Adriatic indentation (Fig. 2). The eastward propagation of the uplifting depocenter in the E. Molasse basin is interpreted to reflect propagation of a subhorizontal slab tear beneath the E. Alps which is imaged by Vp teleseismic tomography. This slab tearing ultimately accompanied Miocene rollback subduction in the Carpathians, as inferred from the migrating depocenter around the orogenic foredeep

    Role of the Giudicarie Belt and eastern Southern Alps in Adriatic Indentation

    Get PDF
    The Giudicarie Belt (GB) sinistrally offsets the Alpine orogenic edifice by some 70 km, including the front of the Adriatic Indenter as defined at the surface by Periadriatic Fault. The GB is a composite structure, comprising northern and southern segments of the Giudicarie Fault (GF), as well as a ≤50 km wide fold-and-thrust belt that strikes obliquely to ENE-WSW trending thrusts affecting Permo-Mesozoic sediments and basement of the eastern Southern Alps (Fig. 1). Stratigraphic and thermochronological constraints indicate that sinistral transpression within the GB began at 21-22 Ma and ceased no later than latest Miocene time. Minimum shortening across the GB in the range of 12-35 km was accommodated by thrusts and strike-slip faults that are inferred to reach down to 15-20 km and to link with the GF (Verwater et al. 2021). The GB does not offset the Moho and also does not coincide with observed changes in lithospheric mantle structure imaged by teleseismic Vp tomography. It is therefore not the site of a slab gap or tear, but forms part of an intracrustal fault system that is linked to the north with thrusts and strike-slip faults beneath the Tauern Window. In the Southern Alps east of the GB, SE-directed folding and thrusting accommodated shortening of 30-50 km. It initiated at 14 Ma (Langhian-Serravalian flysch beneath the Valsugana thrust) and propagated SE-wards to the active Montello thrust along the orogenic front of the Southern Alps (Fig. 1). Thus, thrusting in the eastern Southern Alps began later than within the GB, though deformation within these domains probably overlapped in mid-late Neogene time. We propose that a 1st phase of Adriatic indentation at 23-14 Ma involving sinistral transpression along the GB was linked to an intracrustal detachment that accommodated rapid exhumation of Penninic units in the Tauern Window and eastward lateral extrusion of orogenic crust in the E. Alps (Fig. 1). A 2nd phase of indentation since 14 Ma involved NNW-SSE-directed shortening that crumpled the leading edge of the Adriatic indenter. Section balancing (McPhee et al., this vol.) indicates that thrusts of this 2nd phase are directly linked to bulging and northward wedging of the Adriatic lower crust, as also indicated by local earthquake tomography obtained from Swath D (Fig. 2, Jozi Najafabadi et al. 2022). We note that the model above differs from our original interpretation of broadly coeval activity of the GB and the eastern Southern Alps during late Paleogene-Neogene Adria-Europe convergence (Verwater et al., 2021). In our present view, the Trento-Cles strike-slip fault accommodated differential shortening only within the GB and was not linked to the Schio-Vicenza fault system. The latter is marked by only minor (≤ 4 km) sinistral offset and was reactivated as a Mio-Pliocene normal fault in the foreland of the Apennines (Verwater et al. 2021)

    Palinspastic Reconstruction Versus Cross-Section Balancing: How Complete Is the Central Taurides Fold-Thrust Belt (Turkey)?

    Get PDF
    In many fold-thrust belts, cross section-derived shortening estimates are significantly lower than predicted based on plate convergence. This has led to controversial hypotheses that shortening may be largely underestimated due to wholesale underthrusting (convergence without shortening) below far-traveled continent or ocean-derived nappes. The Late Cretaceous-Eocene Taurides fold-thrust belt (southern Turkey) may contain a highly incomplete shortening record of convergence likely caused by wholesale underthrusting. To estimate this underthrusting, we calculate convergence across the belt using a map-view palinspastic reconstruction that takes into account major rotations of tectonic units during their accretion. We use paleomagnetic and fault kinematic analysis, timing of accretion, and Africa-Eurasia convergence to constrain our reconstruction. Our paleomagnetic results confirm an ~40 degrees clockwise vertical axis rotation of the Geyikda nappe that forms the core of the belt, which we interpret is accommodated by a lateral gradient in underthrusting on faults structurally above and below the Geyikda nappe. We reconstruct ~400-450km of convergence across the Taurides during their accretion. We compare this predicted convergence to shortening calculated from balanced cross sections, in which we reconstruct a minimum of 154-km shortening: 57km within far-traveled nappes, 70-km thrusting of far-traveled nappes over the Geyikda nappe, and 27-km shortening within the Geyikda nappe. Shortening in the Taurides created a significant nappe stack, but the majority of convergence was accommodated by wholesale underthrusting with barely a trace at the surface, including ~160km of convergence by rotation of the belt, and 90-130km related to missing Africa-Eurasia convergence

    The Wow Factor? A Comparative Study of the Development of Student Music Teachers' Talents in Scotland and Australia

    Get PDF
    For some time there has been debate about differing perspectives on musical gift and musical intelligence. One view is that musical gift is innate: that it is present in certain individuals from birth and that the task of the teacher is to develop the potential which is there. A second view is that musical gift is a complex concept which includes responses from individuals to different environments and communities (Howe and Sloboda, 1997). This then raises the possibility that musical excellence can be taught. We have already explored this idea with practising musicians (Stollery and McPhee, 2002). Our research has now expanded to include music teachers in formation, and, in this paper, we look at the influences in their musical development which have either 'crystallised' or 'paralysed' the musical talent which they possess. Our research has a comparative dimension, being carried out in Scotland and in Australia. We conclude that there are several key influences in the musical development of the individual, including home and community support, school opportunities and teaching styles and that there may be education and culture-specific elements to these influences

    Early Miocene tectono-sedimentary shift in the eastern North Alpine Foreland Basin and its relation to changes in tectonic style in the Eastern Alps

    Get PDF
    A striking difference along the Alpine Orogen is the style of collisional tectonics during the Oligo-Miocene, with the onset of escape tectonics in the Eastern Alps (Fig. 1A). The indentation of the Adriatic Plate into the Eastern Alpine Orogen resulted in the formation of conjugate dextral and sinistral strike-slip faults in the vicinity of the Tauern Window. Moreover, major changes occurred in the foreland of the Eastern and Southern Alps in the Early Miocene, with the cessation of the northern Alpine front propagation and the onset of thrusting along the Southern Alpine Front. In this study, we present new results from structural, stratigraphic and subsidence analyses of the eastern North Alpine Foreland Basin (NAFB; Fig. 1B) as part of the “Mountain Building in 4 Dimensions” project, German branch of the European AlpArray initiative, which aims at better understanding the deep crustal-mantle structures of the Alpine Orogen and their relation to surface processes. Our results show a first phase of onset of foreland sedimentation in the eastern NAFB between c. 33-28 Ma, followed by a strong tectonic-driven subsidence between c. 28-25 Ma ending by a phase of erosion and the formation of a basin-wide Northern Slope Unconformity (NSU; Fig. 1C & 1D). During this time period, the rift-related Mesozoic normal faults of the European platform were reactivated and are capped by the NSU (Fig. 1D). We interpret this phase as an increase in the flexure of the subducting European Plate under the growing Alpine Orogen. Between 25-19 Ma, the eastern NAFB remained in a deep-marine, underfilled state with a gently increase in subsidence. A major shift took place around 19-17 Ma with strong tectonic-driven uplift, ranging from 200 m (absolute minimum) to 1200 m depending on uncertainties on paleo-water depths, and rapid sedimentary infill of the basin (Fig. 1C & 1D). We discuss the possible causes for this major tectono-sedimentary shift in the eastern NAFB in relation to contemporaneous changes in collisional tectonics within the Eastern and Southern Alps, and with a potential Early Miocene slab break-off event beneath the Eastern Alps

    Neurodevelopmental outcomes at 7 years’ corrected age in preterm infants who were fed high-dose docosahexaenoic acid to term equivalent: a follow-up of a randomised controlled trial

    Get PDF
    This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work noncommercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/OBJECTIVE: To determine if improvements in cognitive outcome detected at 18 months' corrected age (CA) in infants born <33 weeks' gestation receiving a high-docosahexaenoic acid (DHA) compared with standard-DHA diet were sustained in early childhood. DESIGN: Follow-up of a multicentre randomised controlled trial. Randomisation was stratified for sex, birth weight (<1250 vs ≥1250 g) and hospital. SETTING: Five Australian tertiary hospitals from 2008 to 2013. PARTICIPANTS: 626 of the 657 participants randomised between 2001 and 2005 were eligible to participate. INTERVENTIONS: High-DHA (≈1% total fatty acids) enteral feeds compared with standard-DHA (≈0.3% total fatty acids) from age 2-4 days until term CA. PRIMARY OUTCOME: Full Scale IQ of the Wechsler Abbreviated Scale of Intelligence (WASI) at 7 years CA. Prespecified subgroup analyses based on the randomisation strata (sex, birth weight) were conducted. RESULTS: 604 (92% of the 657 originally randomised) consented to participate (291 high-DHA, 313 standard-DHA). To address missing data in the 604 consenting participants (22 for primary outcome), multiple imputation was performed. The Full Scale IQ was not significantly different between groups (high-DHA 98.3, SD 14.0, standard-DHA 98.5, SD 14.9; mean difference adjusted for sex, birthweight strata and hospital -0.3, 95% CI -2.9 to 2.2; p=0.79). There were no significant differences in any secondary outcomes. In prespecified subgroup analyses, there was a significant sex by treatment interaction on measures of parent-reported executive function and behaviour. Scores were within the normal range but girls receiving the high-DHA diet scored significantly higher (poorer outcome) compared with girls receiving the standard-DHA diet. CONCLUSIONS: Supplementing the diets of preterm infants with a DHA dose of approximately 1% total fatty acids from days 2-4 until term CA showed no evidence of benefit at 7 years' CA. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry: ACTRN12606000327583

    Long term follow up of high risk children: who, why and how?

    Get PDF
    Background: Most babies are born healthy and grow and develop normally through childhood. There are, however, clearly identifiable high-risk groups of survivors, such as those born preterm or with ill-health, who are destined to have higher than expected rates of health or developmental problems, and for whom more structured and specialised follow-up programs are warranted. Discussion This paper presents the results of a two-day workshop held in Melbourne, Australia, to discuss neonatal populations in need of more structured follow-up and why, in addition to how, such a follow-up programme might be structured. Issues discussed included the ages of follow-up, and the personnel and assessment tools that might be required. Challenges for translating results into both clinical practice and research were identified. Further issues covered included information sharing, best practice for families and research gaps. Summary A substantial minority of high-risk children has long-term medical, developmental and psychological adverse outcomes and will consume extensive health and education services as they grow older. Early intervention to prevent adverse outcomes and the effective integration of services once problems are identified may reduce the prevalence and severity of certain outcomes, and will contribute to an efficient and effective use of health resources. The shared long-term goal for families and professionals is to work toward ensuring that high risk children maximise their potential and become productive and valued members of society. Electronic supplementary material The online version of this article (doi:10.1186/1471-2431-14-279) contains supplementary material, which is available to authorized users

    Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey

    Get PDF
    In Central and Western Anatolia two continent-derived massifs simultaneously underthrusted an oceanic lithosphere in the Cretaceous and ended up with very contrasting metamorphic grades: high pressure, low temperature in the Tavsanli zone and the low pressure, high temperature in the Kirsehir Block. To assess why, we reconstruct the Cretaceous paleogeography and plate configuration of Central Anatolia using structural, metamorphic, and geochronological constraints and Africa-Europe plate reconstructions. We review and provide new Ar-40/Ar-39 and U/Pb ages from Central Anatolian metamorphic and magmatic rocks and ophiolites and show new paleomagnetic data on the paleo-ridge orientation in a Central Anatolian Ophiolite. Intraoceanic subduction that formed within the Neotethys around 100-90 Ma along connected N-S and E-W striking segments was followed by overriding oceanic plate extension. Already during suprasubduction zone ocean spreading, continental subduction started. We show that the complex geology of central and southern Turkey can at first order be explained by a foreland-propagating thrusting of upper crustal nappes derived from a downgoing, dominantly continental lithosphere: the Kirsehir Block and Tavsanli zone accreted around 85 Ma, the Afyon zone around 65 Ma, and Taurides accretion continued until after the middle Eocene. We find no argument for Late Cretaceous subduction initiation within a conceptual "Inner Tauride Ocean" between the Kirsehir Block and the Afyon zone as widely inferred. We propose that the major contrast in metamorphic grade between the Kirsehir Block and the Tavsanli zone primarily results from a major contrast in subduction obliquity and the associated burial rates, higher temperature being reached upon higher subduction obliquity.European Research Council ; Netherlands Organization for Scientific Research (NWO

    Preventive medical care in remote Aboriginal communities in the Northern Territory: a follow-up study of the impact of clinical guidelines, computerised recall and reminder systems, and audit and feedback

    Get PDF
    Background Interventions to improve delivery of preventive medical services have been shown to be effective in North America and the UK. However, there are few studies of the extent to which the impact of such interventions has been sustained, or of the impact of such interventions in disadvantaged populations or remote settings. This paper describes the trends in delivery of preventive medical services following a multifaceted intervention in remote community health centres in the Northern Territory of Australia. Methods The intervention comprised the development and dissemination of best practice guidelines supported by an electronic client register, recall and reminder systems and associated staff training, and audit and feedback. Clinical records in seven community health centres were audited at regular intervals against best practice guidelines over a period of three years, with feedback of audit findings to health centre staff and management. Results Levels of service delivery varied between services and between communities. There was an initial improvement in service levels for most services following the intervention, but improvements were in general not fully sustained over the three year period. Conclusions Improvements in service delivery are consistent with the international experience, although baseline and follow-up levels are in many cases higher than reported for comparable studies in North America and the UK. Sustainability of improvements may be achieved by institutionalisation of relevant work practices and enhanced health centre capacity
    corecore