5,438 research outputs found

    Lamb Poster

    Get PDF
    This movie poster was created as an accompaniment to the short film Another Sacrificed Lamb.https://digitalcommons.linfield.edu/aha_2015/1001/thumbnail.jp

    Impact of GRM: New evidence from the Soviet Union

    Get PDF
    Gravity information released by the Soviet Union allows the quantitative assessment of how the geopotential research mission (GRM) mission might effect the ability to use global gravity data for continental tectonic interpretation. The information is of an isostatic response spectra for eight individual tectonic units in the USSR. The regions examined include the Caroathians, Caucasus, Urals, Pamirs, Tien-Shan, Altal, Chersky Ridge, and East Siberian Platform. The 1 deg x 1 deg gravity data are used to calculate the admittances are used in two different sorts of tectonic studies of mountain belts in the USSR: (1) interpretation of isostatic responses in terms of plate models of compensation for mountainous terrain. Using geologic information concerning time of the orogeny, lithospheric plates involved, and polarity of subduction in collision zones, they convert the best-fitting flexural rigidity to an elastic plate thickness for the lithospheric plate inferred to underlie the mountains; the isostatic admittance functions is an attempt to directly model gravity and topography data for a few select regions in the Soviet Union. By knowing the value of the expected correlation between topography and gravity from the admittances, the Artemjev's map in mountainous areas can be calibrated, and the maps are converted back to Bouguer gravity. This procedure is applied to the Caucasus and southern Urals

    Evaluation of moisture barrier coatings on carbon-phenolic SRM nozzle materials

    Get PDF
    The carbon-phenolic composite ablative material used on the Solid Rocket Motor (SRM) nozzle is known to absorb moisture from the atmosphere. This could cause problems such as pocketing during firing. Several moisture barrier coatings were tested on the SRM nozzle material. Data are presented for six of the 12 coatings to be tested. The data were obtained from immersion of coated samples in an environmental chamber at 100 F and 100% relative humidity and by using a modified TGA (thermal gravimetric analysis) technique. The TGA technique involved allowing wet nitrogen (25 C, 80% relative humidity) to flow across a small sample at about 65 cu cm per minute while continually monitoring the weight increase. These preliminary results show Kel-F-800, a material supplied by 3M Corporation to be the better moisture barrier. A second task was to collect data on the relative absorption of water and kerosene into the carbon-phenolic SRM nozzle material. These data indicate that water absorbs into the nozzle material to a much greater extent than kerosene. Thus kerosene is the more likely solvent in which to make specific gravity measurements on the SRM nozzle material

    Net current measurements and secondary electron emission characteristics of the Voyager plasma science experiment and their impact on data interpretation

    Get PDF
    The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing

    Semiparametric Causal Sufficient Dimension Reduction Of High Dimensional Treatments

    Full text link
    Cause-effect relationships are typically evaluated by comparing the outcome responses to binary treatment values, representing two arms of a hypothetical randomized controlled trial. However, in certain applications, treatments of interest are continuous and high dimensional. For example, understanding the causal relationship between severity of radiation therapy, represented by a high dimensional vector of radiation exposure values and post-treatment side effects is a problem of clinical interest in radiation oncology. An appropriate strategy for making interpretable causal conclusions is to reduce the dimension of treatment. If individual elements of a high dimensional treatment vector weakly affect the outcome, but the overall relationship between the treatment variable and the outcome is strong, careless approaches to dimension reduction may not preserve this relationship. Moreover, methods developed for regression problems do not transfer in a straightforward way to causal inference due to confounding complications between the treatment and outcome. In this paper, we use semiparametric inference theory for structural models to give a general approach to causal sufficient dimension reduction of a high dimensional treatment such that the cause-effect relationship between the treatment and outcome is preserved. We illustrate the utility of our proposal through simulations and a real data application in radiation oncology
    corecore