Cause-effect relationships are typically evaluated by comparing the outcome
responses to binary treatment values, representing two arms of a hypothetical
randomized controlled trial. However, in certain applications, treatments of
interest are continuous and high dimensional. For example, understanding the
causal relationship between severity of radiation therapy, represented by a
high dimensional vector of radiation exposure values and post-treatment side
effects is a problem of clinical interest in radiation oncology. An appropriate
strategy for making interpretable causal conclusions is to reduce the dimension
of treatment. If individual elements of a high dimensional treatment vector
weakly affect the outcome, but the overall relationship between the treatment
variable and the outcome is strong, careless approaches to dimension reduction
may not preserve this relationship. Moreover, methods developed for regression
problems do not transfer in a straightforward way to causal inference due to
confounding complications between the treatment and outcome. In this paper, we
use semiparametric inference theory for structural models to give a general
approach to causal sufficient dimension reduction of a high dimensional
treatment such that the cause-effect relationship between the treatment and
outcome is preserved. We illustrate the utility of our proposal through
simulations and a real data application in radiation oncology