413 research outputs found

    Ly6C hi Monocytes Are Metabolically Reprogrammed in the Blood during Inflammatory Stimulation and Require Intact OxPhos for Chemotaxis and Monocyte to Macrophage Differentiation

    Get PDF
    Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G−Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair

    Reaction Energetics and ¹³C Fractionation of Alanine Transamination in the Aqueous and Gas Phases

    Get PDF
    The alanine transaminase (ALT) enzyme catalyzes the transfer of an amino group from alanine to α-ketoglutarate to produce pyruvate and glutamate. Isotope fractionation factors (IFFs) for the reaction ⁺H₃NCH(CH₃)COO⁻ + ⁻OOCCH₂CH₂C(O)COO⁻ ↔ CH₃C(O)COO⁻ + ⁻H₃NCH(CH₂CH₂COO⁻)COO⁻ (zwitterionic neutral alanine + doubly deprotonated α-ketoglutarate ↔ pyruvate + zwitterionic glutamate anion) were calculated from the partition functions of explicitly and implicitly solvated molecules at 298 K. Calculations were done for alanine (non-charge separated, zwitterion, deprotonated,), pyruvic acid (neutral, deprotonated), glutamic acid (non-charge separated, zwitterion, deprotonated, doubly deprotonated), and α-ketoglutaric acid (neutral, deprotonated, doubly deprotonated). The computational results, calculated from gas phase and aqueous optimized clusters with explicit H₂O molecules at the MP₂/aug-cc-pVDZ and MP₂/aug-cc-pVDZ/COSMO levels, respectively, predict that substitution of ¹³C at the C2 position of alanine and pyruvic acid and their various forms leads to the C2 position of pyruvic acid/pyruvate being enriched in ¹³C/¹²C ratio by 9 ‰. Simpler approaches that estimate the IFFs based solely on changes in the zero-point energies (ZPEs) are consistent with the higher-level model. ZPE-based IFFs calculated for simple analogues formaldehyde and methylamine (analogous to the C₂ positions of pyruvate and alanine, respectively) predict a ¹³C enrichment in formaldehyde of 7 to 8 ‰ at the MP₂/aug-cc-pVDZ and aug-cc-pVTZ levels. A simple predictive model using canonical functional group frequencies and reduced masses for ¹³C exchange between R₂C=O and R₂CH-NH₂ predicted enrichment in R₂C=O that is too large by a factor of two, but is qualitatively accurate compared with the more sophisticated models. Our models are all in agreement with the expectation that pyruvate and formaldehyde will be preferentially enriched in ¹³C due to the strength of their >C=O bond relative to that of the ≡C-NH₂ in alanine and methylamine. ¹³C/¹²C substitution is also modeled at the methyl and carboxylic acid sites of alanine and pyruvic acid, respectively

    Academic Problem-Solving and Students’ identities as engineers

    Get PDF
    Socially constructed identities and language practices influence the ways students perceive themselves as learners, problem solvers, and future professionals. While research has been conducted on individuals’ identity as engineers, less has been written about how the language used during engineering problem solving influences students’ perceptions and their construction of identities as learners and future engineers. This study investigated engineering students’ identities as reflected in their use of language and discourses while engaged in an engineering problem solving activity. We conducted interviews with eight engineering students at a large southeastern university about their approaches to open and closed-ended materials engineering problems. A modification of Gee’s analysis of language-in-use was used to analyze the interviews. We found that pedagogical and engineering problem solving uses of language were the most common. Participants were more likely to perceive themselves as students highlighting the practices, expectations, and language associated with being a student rather than as emerging engineers whose practices are affected by conditions of professional practice. We suggest that problem solving in an academic setting may not encourage students to consider alternative discourses related to industry, professionalism, or creativity; and, consequently, fail to promote connections to social worlds beyond the classroom. By learning about the ways in which language in particular settings produces identities and shapes problem solving practices, educators and engineering professionals can gain deeper understanding of how language shapes the ways students describe themselves as problem-solvers and make decisions about procedures and techniques to solve engineering problems

    The Sky is Falling: Chemical Characterization and Corrosion Evaluation of Deposition Produced During the Static Testing of Solid Rocket Motors

    Get PDF
    Static tests of horizontally restrained rocket motors at the ATK facility in Promontory UT, USA result in the deposition of entrained soil and fuel combustion products, referred to as Test Fire Soil (TFS), over areas as large as 30–50 mile2 (80–130 km2) and at distances up to 10–12 miles (16–20 km) from the test site. Chloride is the main combustion product generated from the ammonium perchlorate–aluminum based composite propellant. Deposition sampling/characterization and a 6-month field corrosivity study using mild steel coupons were conducted in conjunction with the February 25th 2010 FSM-17 static test. The TFS deposition rates at the three study sites ranged from 1 to 5 g/min/m2. TFS contained significantly more chloride than the surface soil collected from the test site. The TFS collected during two subsequent tests had similarly elevated chloride, suggesting that the results obtained in this study are applicable to other tests assuming that the rocket fuel composition remains similar. The field-deployed coupons exposed to the TFS had higher corrosion rates (3.6–5.0 mpy) than paired non-exposed coupons (1.6–1.8 mpy). Corrosion rates for all coupon

    NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition

    Get PDF
    BACKGROUND: Nogo-A, a myelin-associated protein, inhibits neurite outgrowth and abates regeneration in the adult vertebrate central nervous system (CNS) and may play a role in maintaining neural pathways once established. However, the presence of Nogo-A during early CNS development is counterintuitive and hints at an additional role for Nogo-A beyond neurite inhibition. RESULTS: We isolated chicken NOGO-A and determined its sequence. A multiple alignment of the amino acid sequence across divergent species, identified five previously undescribed, Nogo-A specific conserved regions that may be relevant for development. NOGO gene transcripts (NOGO-A, NOGO-B and NOGO-C) were differentially expressed in the CNS during development and a second NOGO-A splice variant was identified. We further localized NOGO-A expression during key phases of CNS development by in situ hybridization. CNS-associated NOGO-A was induced coincident with neural plate formation and up-regulated by FGF in the transformation of non-neural ectoderm into neural precursors. NOGO-A expression was diffuse in the neuroectoderm during the early proliferative phase of development, and migration, but localized to large projection neurons of the optic tectum and tectal-associated nuclei during architectural differentiation, lamination and network establishment. CONCLUSION: These data suggest Nogo-A plays a functional role in the determination of neural identity and/or differentiation and also appears to play a later role in the networking of large projection neurons during neurite formation and synaptogenesis. These data indicate that Nogo-A is a multifunctional protein with additional roles during CNS development that are disparate from its later role of neurite outgrowth inhibition in the adult CNS

    Design, Manufacture and Performance of Germanium Bipolar Transistors

    Get PDF
    Germanium NPN bipolar transistors have been manufactured using phosphorus and boron ion implantation processes. Implantation and subsequent activation processes have been investigated for both dopants. Full activation of phosphorus implants has been achieved with RTA schedules at 535C without significant junction diffusion. However, boron implant activation was limited and diffusion from a polysilicon source was not practical for base contact formation. Transistors with good output characteristics were achieved with an Early voltage of 55V and common emitter current gain of 30. Both Silvaco process and device simulation tools have been successfully adapted to model the Ge BJT(bipolar junction transistor) performance.<br/

    Recommended core items to assess e-cigarette use in population-based surveys

    Get PDF
    A consistent approach using standardised items to assess e-cigarette use in both youth and adult populations will aid cross-survey and cross-national comparisons of the effect of e-cigarette (and tobacco) policies and improve our understanding of the population health impact of e-cigarette use. Focusing on adult behaviour, we propose a set of e-cigarette use items, discuss their utility and potential adaptation, and highlight e-cigarette constructs that researchers should avoid without further item development. Reliable and valid items will strengthen the emerging science and inform knowledge synthesis for policy-making. Building on informal discussions at a series of international meetings of 65 experts from 15 countries, the authors provide recommendations for assessing e-cigarette use behaviour, relative perceived harm, device type, presence of nicotine, flavours and reasons for use. We recommend items assessing eight core constructs: e-cigarette ever use, frequency of use and former daily use; relative perceived harm; device type; primary flavour preference; presence of nicotine; and primary reason for use. These items should be standardised or minimally adapted for the policy context and target population. Researchers should be prepared to update items as e-cigarette device characteristics change. A minimum set of e-cigarette items is proposed to encourage consensus around items to allow for cross-survey and cross-jurisdictional comparisons of e-cigarette use behaviour. These proposed items are a starting point. We recognise room for continued improvement, and welcome input from e-cigarette users and scientific colleagues

    Promising insights into the health related quality of life for children with severe obesity

    Get PDF
    Background Childhood obesity is a growing health concern known to adversely affect quality of life in children and adolescents. The Patient Reported Outcomes Measurement Information System (PROMIS) pediatric measures were developed to capture child self-reports across a variety of health conditions experienced by children and adolescents. The purpose of this study is to begin the process of validation of the PROMIS pediatric measures in children and adolescents affected by obesity. Methods The pediatric PROMIS instruments were administered to 138 children and adolescents in a cross-sectional study of patient reported outcomes in children aged 8–17 years with age-adjusted body mass index (BMI) greater than the 85th percentile in a design to establish known-group validity. The children completed the depressive symptoms, anxiety, anger, peer relationships, pain interference, fatigue, upper extremity, and mobility PROMIS domains utilizing a computer interface. PROMIS domains and individual items were administered in random order and included a total of 95 items. Patient responses were compared between patients with BMI 85 to < 99th percentile versus ≥ 99th percentile. Results 136 participants were recruited and had all necessary clinical data for analysis. Of the 136 participants, 5% ended the survey early resulting in missing domain scores at the end of survey administration. In multivariate analysis, patients with BMI ≥ 99th percentile had worse scores for depressive symptoms, anger, fatigue, and mobility (p < 0.05). Parent-reported exercise was associated with better scores for depressive symptoms, anxiety, and fatigue (p < 0.05). Conclusions Children and adolescents ranging from overweight to severely obese can complete multiple PROMIS pediatric measures using a computer interface in the outpatient setting. In the 5% with missing domain scores, the missing scores were consistently found in the domains administered last, suggesting the length of the assessment is important. The differences in domain scores found in this study are consistent with previous reports investigating the quality of life in children and adolescents with obesity. We show that the PROMIS instrument represents a feasible and potentially valuable instrument for the future study of the effect of pediatric obesity on quality of life
    corecore