61 research outputs found

    Direct Measurement of the Key e c. m.=456 keV Resonance in the Astrophysical Ne 19 (p,γ) Na 20 Reaction and Its Relevance for Explosive Binary Systems

    Get PDF
    We have performed a direct measurement of the Ne19(p,γ)Na20 reaction in inverse kinematics using a beam of radioactive Ne19. The key astrophysical resonance in the Ne19+p system has been definitely measured for the first time at Ec.m.=456-2+5 keV with an associated strength of 17-5+7 meV. The present results are in agreement with resonance strength upper limits set by previous direct measurements, as well as resonance energies inferred from precision (He3, t) charge exchange reactions. However, both the energy and strength of the 456 keV resonance disagree with a recent indirect study of the Ne19(d, n)Na20 reaction. In particular, the new Ne19(p,γ)Na20 reaction rate is found to be factors of ∼8 and ∼5 lower than the most recent evaluation over the temperature range of oxygen-neon novae and astrophysical x-ray bursts, respectively. Nevertheless, we find that the Ne19(p,γ)Na20 reaction is likely to proceed fast enough to significantly reduce the flux of F19 in nova ejecta and does not create a bottleneck in the breakout from the hot CNO cycles into the rp process

    Investigation of the role of 10^{10}Li resonances in the halo structure of 11^{11}Li through the 11^{11}Li(p, d)10^{10}Li transfer reaction

    Get PDF
    International audienceThe first measurement of the one-neutron transfer reaction 11Li(p,d)10Li performed using the IRIS facility at TRIUMF with a 5.7AMeV11Li beam interacting with a solid H2 target is reported. The 10Li residue was populated strongly as a resonance peak with energy Er=0.62 ±0.04MeV having a total width Γ\Gamma = 0.33 ±0.07MeV. The angular distribution of this resonance is characterized by neutron occupying the 1p1/2orbital. A DWBA analysis yields a spectroscopic factor of 0.67 ±0.12for p1/2 removal strength from the ground state of 11Li to the region of the peak

    Lithospheric geometry of the Wopmay orogen from a Slave craton to Bear Province magnetotelluric transect

    Get PDF
    Two‐dimensional inversions of lithospheric‐probing magnetotelluric (MT) data at a total of 20 sites acquired along an approximately east–west 300‐km‐long profile across the Wopmay orogen in the Northwest Territories, Canada, provide electrical resistivity models of the boundary between the Archean Slave craton and the adjacent Proterozoic Bear Province. An analysis of distortion effects and structural dimensionality indicates that the MT responses are primarily one‐dimensional or only weakly two‐dimensional with a depth‐independent geoelectric strike angle of N32°E, consistent with regional structural geology. The regional‐scale model, generated from the longer period responses from all of the sites along the profile, reveals significant lateral variations in the lithospheric mantle. Resistive cratonic roots are imaged to depths of ∼200 km beneath both the Slave craton and the Hottah terrane of the Bear Province. These are separated by a less resistive region beneath the Great Bear magmatic zone, which is speculatively interpreted as a consequence of a decrease in the grain size of olivine in the Wopmay mantle, caused by localized shearing, compared to its neighboring cratonic roots. Focused two‐dimensional models, from higher frequency responses at sites on specific sections of the profile, reveal the resistivity structure at crustal depths beneath the region. These suggest that the root of the Slave craton crosses beneath the Wopmay orogen, and that the Wopmay fault zone does not penetrate into the lower crust. A comparison of these results with those obtained during the Lithoprobe project farther south shows striking along strike variations in the conductivity structure associated with the Wopmay orogen
    corecore