251 research outputs found
Inoculum Size Effect in Dimorphic Fungi: Extracellular Control of Yeast-Mycelium Dimorphism in \u3ci\u3eCeratocystis ulmi\u3c/i\u3e
We studied the inoculum size effect in Ceratocystis ulmi, the dimorphic fungus that causes Dutch elm disease. In a defined glucose-proline-salts medium, cells develop as budding yeasts when inoculated at \u3e106 spores per ml and as mycelia when inoculated at type, age of the spores, temperature, pH, oxygen availability, trace metals, sulfur source, phosphorous source, or the concentration of glucose or proline. Similarly, it was not influenced by added adenosine, reducing agents, methyl donors, amino sugars, fatty acids, or carbon dioxide. Instead, growing cells excreted an unknown quorum-sensing factor that caused a morphological shift from mycelia to budding yeasts. This yeast-promoting effect is abolished if it is extracted with an organic solvent such as ethyl acetate. The quorum-sensing activity acquired by the organic solvent could be added back to fresh medium in a dosedependent fashion. The quorum-sensing activity in C. ulmi spent medium was specific for C. ulmi and had no effect on the dimorphic fungus Candida albicans or the photomorphogenic fungus Penicillium isariaeforme. In addition, farnesol, the quorum-sensing molecule produced by C. albicans, did not inhibit mycelial development of C. ulmi when present at concentrations of up to 100 μM. We conclude that the inoculum size effect is a manifestation of a quorum-sensing system that is mediated by an excreted extracellular molecule, and we suggest that quorum sensing is a general phenomenon in dimorphic fungi
Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages
BACKGROUND: Previous studies of prostate cancer autoantibodies have largely focused on diagnostic applications. So far, there have been no reports attempting to more comprehensively profile the landscape of prostate cancer-associated antibodies. Specifically, it is unknown whether the quantity of antibodies or the types of proteins recognized change with disease progression.
METHODS: A peptide microarray spanning the amino acid sequences of the gene products of 1611 prostate cancer-associated genes was synthesized. Serum samples from healthy male volunteers (n=15) and patients with prostate cancer (n=85) were used to probe the array. These samples included patients with various clinical stages of disease: newly diagnosed localized prostate cancer (n=15), castration-sensitive non-metastatic prostate cancer (nmCSPC, n=40), castration-resistant non-metastatic prostate cancer (n=15) and castration-resistant metastatic disease (n=15). The patients with nmCSPC received treatment with either standard androgen deprivation therapy (ADT) or an antitumor DNA vaccine encoding prostatic acid phosphatase. Serial sera samples from these individuals were also used to probe the array, to secondarily determine whether this approach could be used to detect treatment-related changes.
RESULTS: We demonstrated that this peptide array yielded highly reproducible measurements of serum IgG levels. We found that the overall number of antibody responses did not increase with disease burden. However, the composition of recognized proteins shifted with clinical stage of disease. Our analysis revealed that the largest difference was between patients with castration-sensitive and castration-resistant disease. Patients with castration-resistant disease recognized more proteins associated with nucleic acid binding and gene regulation compared with men in other groups. Our longitudinal data showed that treatments can elicit antibodies detectable by this array, and notably vaccine-treated patients developed increased responses to more proteins over the course of treatment than did ADT-treated patients.
CONCLUSIONS: This study represents the largest survey of prostate cancer-associated antibodies to date. We have been able to characterize the classes of proteins recognized by patients and determine how they change with disease burden. Our findings further demonstrate the potential of this platform for measuring antigen spread and studying responses to immunomodulatory therapies
The observation of long-range three-body Coloumb effects in the decay of 16Ne
The interaction of an =57.6-MeV Ne beam with a Be target was used
to populate levels in Ne following neutron knockout reactions. The decay
of Ne states into the three-body O++ continuum was observed
in the High Resolution Array (HiRA). For the first time for a 2p emitter,
correlations between the momenta of the three decay products were measured with
sufficient resolution and statistics to allow for an unambiguous demonstration
of their dependence on the long-range nature of the Coulomb interaction.
Contrary to previous experiments, the intrinsic decay width of the Ne
ground state was found to be narrow (~keV), consistent with
theoretical estimates.Comment: 6 pages, 5 figure
144 EFFECT OF ANTRAL FOLLICLE COUNT IN BEEF HEIFERS ON \u3ci\u3eIN VITRO\u3c/i\u3e FERTILIZATION/PRODUCTION
Our objective has been to compare the IVF and in vitro production (IVP) of embryos from low and high antral follicle count (AFC) heifers. This is the fourth year of the study with years 1 to 3 reported individually. For this report, we add data for the fourth year and present a combined analysis (years 1 to 4) for the first time. Each year, AFC was determined on ~120 Angus heifers using transrectal ultrasonography. Ten heifers with the lowest AFC and 10 heifers with the highest AFC and all with evidence of oestrous cyclicity were synchronized with two 5-mL injections of PGF2α 11 days apart. Half were harvested on Day 5 to 6 and half on Day 15 to 16 of the oestrous cycle. The IVF procedure was slightly modified each year. For year 4, the IVF procedure included protocols for semi-defined media and was as described (IVP Protocol, P. J. Hansen’s Laboratory, University of Florida). Cumulus-oocyte complexes (COC) from follicles less than 8 mm in diameter were cultured in maturation medium (5% CO2; 38.5°C) for 24 h
Ground-state properties of H 5 from the He 6 (d, He 3) H 5 reaction
We have studied the ground state of the unbound, very neutron-rich isotope of hydrogen H5, using the He6(d,He3)H5 reaction in inverse kinematics at a bombarding energy of E(He6)=55A MeV. The present results suggest a ground-state resonance energy ER=2.4±0.3 MeV above the H3+2n threshold, with an intrinsic width of Γ=5.3±0.4 MeV in the H5 system. Both the resonance energy and width are higher than those reported in some, but not all previous studies of H5. The previously unreported He6(d,t)Heg.s.5 reaction is observed in the same measurement, providing a check on the understanding of the response of the apparatus. The data are compared to expectations from direct two-neutron and dineutron decay. The possibility of excited states of H5 populated in this reaction is discussed using different calculations of the He6→H5+p spectroscopic overlaps from shell-model and ab initio nuclear-structure calculations
Structure of C 14 and B 14 from the C 14,15 (d, He 3) B 13,14 reactions
We have studied the C14,15(d,He3)B13,14 proton-removing reactions in inverse kinematics. The (d,He3) reaction probes the proton occupation of the target ground state, and also provides spectroscopic information about the final states in B13,14. The experiments were performed using C14,15 beams from the ATLAS accelerator at Argonne National Laboratory. The reaction products were analyzed with the HELIOS device. Angular distributions were obtained for transitions from both reactions. The C14-beam data reveal transitions to excited states in B13 that suggest configurations with protons outside the π(0p3/2) orbital, and some possibility of proton cross-shell 0p-1s0d excitations, in the C14 ground state. The C15-beam data confirm the existence of a broad 2- excited state in B14. The experimental data are compared to the results of shell-model calculations
Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Background: Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods: Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 x 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results: The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion: Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment.30Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Radiology of the Hospital Estadual Sumare UNICAMPSCOGConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [401327/05-1
Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
- …