59 research outputs found

    The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli in vitro

    Get PDF
    Amongst the recognized classes of naturally occurring antimicrobials, human host defense peptides are an important group with an advantage (given their source) that they should be readily translatable to medicinal products. It is also plausible that truncated versions will display some of the biological activities of the parent peptide, with the benefit that they are less costly to synthesize using solid-phase chemistry. The host defense peptide, LL-37, and two truncated mimetics, KE-18 and KR-12, were tested for their inhibitory effects and antibiofilm properties against Candida albicans, Staphylococcus aureus, and Escherichia coli, microorganisms commonly implicated in biofilm-related infections such as ventilator-associated pneumonia (VAP). Using in silico prediction tools, the truncated peptides KE-18 and KR-12 were selected for minimum inhibitory concentration (MIC) and antibiofilm testing on the basis of their favorable cationicity, hydrophobic ratio, and amphipathicity compared with the parent peptide. Two methods were analyzed for determining peptide efficacy against biofilms; a crystal violet assay and an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. The biocidal activities (measured by MIC) and antibiofilm activities (measured by a crystal violet assay) appeared to be independent. LL-37 had no biocidal action against C. albicans (MIC > 250 μg/ml) but significant effects in both biofilm-prevention and biofilm-inhibition assays. KE-18 and KR-12 yielded superior MIC values against all three microorganisms. Only KE-18 had a significant effect in the biofilm-prevention assay, which persisted even at sub-MICs. Neither of the truncated peptides were active in the biofilm-inhibition assay. KE-18 was shown to bind lipopolysaccharide as effectively as LL-37 and to bind lipoteichoic acid more effectively. None of the peptides showed hemolytic activity against human erythrocytes at the concentrations tested. KE-18 should be considered for further development as a natural peptide-derived therapeutic for prevention of multi-species biofilm-related infections such as VAP

    The use of high-throughput sequencing to investigate an outbreak of glycopeptide-resistant Enterococcus faecium with a novel quinupristin-dalfopristin resistance mechanism.

    Get PDF
    High-throughput sequencing (HTS) has successfully identified novel resistance genes in enterococci and determined clonal relatedness in outbreak analysis. We report the use of HTS to investigate two concurrent outbreaks of glycopeptide-resistant Enterococcus faecium (GRE) with an uncharacterised resistance mechanism to quinupristin-dalfopristin (QD).Seven QD-resistant and five QD-susceptible GRE isolates from a two-centre outbreak were studied. HTS was performed to identify genes or predicted proteins that were associated with the QD-resistant phenotype. MLST and SNP typing on HTS data was used to determine clonal relatedness.Comparative genomic analysis confirmed this GRE outbreak involved two distinct clones (ST80 and ST192). HTS confirmed the absence of known QD resistance genes, suggesting a novel mechanism was conferring resistance. Genomic analysis identified two significant genetic determinants with explanatory power for the high level of QD resistance in the ST80 QD-resistant clone: an additional 56aa leader sequence at the N-terminus of the lsaE gene and a transposon containing seven genes encoding proteins with possible drug or drug-target modification activities. However, HTS was unable to conclusively determine the QD resistance mechanism and did not reveal any genetic basis for QD resistance in the ST192 clone. This study highlights the usefulness of HTS in deciphering the degree of relatedness in two concurrent GRE outbreaks. Although HTS was able to reveal some genetic candidates for uncharacterised QD resistance, this study demonstrates the limitations of HTS as a tool for identifying putative determinants of resistance to QD

    Effectiveness of biomarker-based exclusion of ventilator-acquired pneumonia to reduce antibiotic use (VAPrapid-2): study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Ventilator-acquired pneumonia (VAP) is a common reason for antimicrobial therapy in the intensive care unit (ICU). Biomarker-based diagnostics could improve antimicrobial stewardship through rapid exclusion of VAP. Bronchoalveloar lavage (BAL) fluid biomarkers have previously been shown to allow the exclusion of VAP with high confidence. METHODS/DESIGN: This is a prospective, multi-centre, randomised, controlled trial to determine whether a rapid biomarker-based exclusion of VAP results in fewer antibiotics and improved antimicrobial management. Patients with clinically suspected VAP undergo BAL, and VAP is confirmed by growth of a potential pathogen at [≥] 10(4) colony-forming units per millilitre (CFU/ml). Patients are randomised 1:1, to either a 'biomarker-guided recommendation on antibiotics' in which BAL fluid is tested for IL-1β and IL-8 in addition to routine microbiology testing, or to 'routine use of antibiotics' in which BAL undergoes routine microbiology testing only. Clinical teams are blinded to intervention until 6 hours after randomisation, when biomarker results are reported to the clinician. The primary outcome is a change in the frequency distribution of antibiotic-free days (AFD) in the 7 days following BAL. Secondary outcome measures include antibiotic use at 14 and 28 days; ventilator-free days; 28-day mortality and ICU mortality; sequential organ failure assessment (SOFA) at days 3, 7 and 14; duration of stay in critical care and the hospital; antibiotic-associated infections; and antibiotic-resistant pathogen cultures up to hospital discharge, death or 56 days. A healthcare-resource-utilisation analysis will be calculated from the duration of critical care and hospital stay. In addition, safety data will be collected with respect to performing BAL. A sample size of 210 will be required to detect a clinically significant shift in the distribution of AFD towards more patients having fewer antibiotics and therefore more AFD. DISCUSSION: This trial will test whether a rapid biomarker-based exclusion of VAP results in rapid discontinuation of antibiotics and therefore improves antibiotic management in patients with suspected VAP. TRIAL REGISTRATION: ISRCTN65937227 . Registered on 22 August 2013. ClinicalTrials.gov, NCT01972425 . Registered on 24 October 2013

    Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia.

    Get PDF
    BACKGROUND: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare. OBJECTIVES: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP. METHODS: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >10(4) colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination. RESULTS: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%). CONCLUSIONS: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship

    A randomized controlled trial of tea tree oil (5%) body wash versus standard body wash to prevent colonization with methicillin-resistant Staphylococcus aureus (MRSA) in critically ill adults: research protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past ten years MRSA has become endemic in hospitals and is associated with increased healthcare costs. Critically ill patients are most at risk, in part because of the number of invasive therapies that they require in the intensive care unit (ICU). Washing with 5% tea tree oil (TTO) has been shown to be effective in removing MRSA on the skin. However, to date, no trials have evaluated the potential of TTO body wash to prevent MRSA colonization or infection. In addition, detecting MRSA by usual culture methods is slow. A faster method using a PCR assay has been developed in the laboratory, but requires evaluation in a large number of patients.</p> <p>Methods/Design</p> <p>This study protocol describes the design of a multicentre, phase II/III prospective open-label randomized controlled clinical trial to evaluate whether a concentration of 5% TTO is effective in preventing MRSA colonization in comparison with a standard body wash (Johnsons Baby Softwash) in the ICU. In addition we will evaluate the cost-effectiveness of TTO body wash and assess the effectiveness of the PCR assay in detecting MRSA in critically ill patients. On admission to intensive care, swabs from the nose and groin will be taken to screen for MRSA as per current practice. Patients will be randomly assigned to be washed with the standard body wash or TTO body wash. On discharge from the unit, swabs will be taken again to identify whether there is a difference in MRSA colonization between the two groups.</p> <p>Discussion</p> <p>If TTO body wash is found to be effective, widespread implementation of such a simple colonization prevention tool has the potential to impact on patient outcomes, healthcare resource use and patient confidence both nationally and internationally.</p> <p>Trial Registration</p> <p>[ISRCTN65190967]</p

    Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2) : a randomised controlled trial and process evaluation

    Get PDF
    Background Ventilator-associated pneumonia is the most common intensive care unit (ICU)-acquired infection, yet accurate diagnosis remains difficult, leading to overuse of antibiotics. Low concentrations of IL-1β and IL-8 in bronchoalveolar lavage fluid have been validated as effective markers for exclusion of ventilator-associated pneumonia. The VAPrapid2 trial aimed to determine whether measurement of bronchoalveolar lavage fluid IL-1β and IL-8 could effectively and safely improve antibiotic stewardship in patients with clinically suspected ventilator-associated pneumonia. Methods VAPrapid2 was a multicentre, randomised controlled trial in patients admitted to 24 ICUs from 17 National Health Service hospital trusts across England, Scotland, and Northern Ireland. Patients were screened for eligibility and included if they were 18 years or older, intubated and mechanically ventilated for at least 48 h, and had suspected ventilator-associated pneumonia. Patients were randomly assigned (1:1) to biomarker-guided recommendation on antibiotics (intervention group) or routine use of antibiotics (control group) using a web-based randomisation service hosted by Newcastle Clinical Trials Unit. Patients were randomised using randomly permuted blocks of size four and six and stratified by site, with allocation concealment. Clinicians were masked to patient assignment for an initial period until biomarker results were reported. Bronchoalveolar lavage was done in all patients, with concentrations of IL-1β and IL-8 rapidly determined in bronchoalveolar lavage fluid from patients randomised to the biomarker-based antibiotic recommendation group. If concentrations were below a previously validated cutoff, clinicians were advised that ventilator-associated pneumonia was unlikely and to consider discontinuing antibiotics. Patients in the routine use of antibiotics group received antibiotics according to usual practice at sites. Microbiology was done on bronchoalveolar lavage fluid from all patients and ventilator-associated pneumonia was confirmed by at least 104 colony forming units per mL of bronchoalveolar lavage fluid. The primary outcome was the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage. Data were analysed on an intention-to-treat basis, with an additional per-protocol analysis that excluded patients randomly assigned to the intervention group who defaulted to routine use of antibiotics because of failure to return an adequate biomarker result. An embedded process evaluation assessed factors influencing trial adoption, recruitment, and decision making. This study is registered with ISRCTN, ISRCTN65937227, and ClinicalTrials.gov, NCT01972425. Findings Between Nov 6, 2013, and Sept 13, 2016, 360 patients were screened for inclusion in the study. 146 patients were ineligible, leaving 214 who were recruited to the study. Four patients were excluded before randomisation, meaning that 210 patients were randomly assigned to biomarker-guided recommendation on antibiotics (n=104) or routine use of antibiotics (n=106). One patient in the biomarker-guided recommendation group was withdrawn by the clinical team before bronchoscopy and so was excluded from the intention-to-treat analysis. We found no significant difference in the primary outcome of the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage in the intention-to-treat analysis (p=0·58). Bronchoalveolar lavage was associated with a small and transient increase in oxygen requirements. Established prescribing practices, reluctance for bronchoalveolar lavage, and dependence on a chain of trial-related procedures emerged as factors that impaired trial processes

    Therapy for Infection

    No full text

    Accuracy of LightCycler(R) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis : a systematic review protocol

    Get PDF
    Background There is growing interest in the potential utility of molecular diagnostics in improving the detection of life-threatening infection (sepsis). LightCycler® SeptiFast is a multipathogen probe-based real-time PCR system targeting DNA sequences of bacteria and fungi present in blood samples within a few hours. We report here the protocol of the first systematic review of published clinical diagnostic accuracy studies of this technology when compared with blood culture in the setting of suspected sepsis. Methods/design Data sources: the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects (DARE), the Health Technology Assessment Database (HTA), the NHS Economic Evaluation Database (NHSEED), The Cochrane Library, MEDLINE, EMBASE, ISI Web of Science, BIOSIS Previews, MEDION and the Aggressive Research Intelligence Facility Database (ARIF). Study selection: diagnostic accuracy studies that compare the real-time PCR technology with standard culture results performed on a patient's blood sample during the management of sepsis. Data extraction: three reviewers, working independently, will determine the level of evidence, methodological quality and a standard data set relating to demographics and diagnostic accuracy metrics for each study. Statistical analysis/data synthesis: heterogeneity of studies will be investigated using a coupled forest plot of sensitivity and specificity and a scatter plot in Receiver Operator Characteristic (ROC) space. Bivariate model method will be used to estimate summary sensitivity and specificity. The authors will investigate reporting biases using funnel plots based on effective sample size and regression tests of asymmetry. Subgroup analyses are planned for adults, children and infection setting (hospital vs community) if sufficient data are uncovered. Dissemination Recommendations will be made to the Department of Health (as part of an open-access HTA report) as to whether the real-time PCR technology has sufficient clinical diagnostic accuracy potential to move forward to efficacy testing during the provision of routine clinical care
    corecore