11 research outputs found

    Leopards and mesopredators as indicators of mammalian species richness across diverse landscapes of South Africa

    Get PDF
    The rapid extinction of species over the past few decades has created a biodiversity crisis. Factors contributing to recent extirpations are linked to increased human population growth, habitat loss and fragmentation, and over-exploitation of wildlife. Only decisive, effective action to combat biodiversity loss can reverse these trends. The use of indicator species as surrogates for biodiversity provides a way to identify areas with high biodiversity so that conservation efforts can be accelerated and supported in those areas. Predators are considered important indicators of healthy, biodiverse ecosystems due to their high trophic level and their direct and indirect interaction with other species. Using camera trap data from 221 cameras set across five vegetation types and five land use zones in South Africa, we evaluated carnivores as potential surrogates for biodiversity

    Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa

    Get PDF
    Apex predators play a critical role in maintaining the health of ecosystems but are highly susceptible to habitat degradation and loss caused by land-use changes, and to anthropogenic mortality. The leopard Panthera pardus is the last free-roaming large carnivore in the Western Cape province, South Africa. During –, we carried out a camera-trap survey across three regions covering c. , km of the Western Cape. Our survey comprised camera sites sampling nearly , camera-trap nights, resulting in the identification of individuals. We used two spatially explicit capture–recapture methods (R programmes secr and SPACECAP) to provide a comprehensive density analysis capable of incorporating environmental and anthropogenic factors

    Gene flow and population structure of a solitary top carnivore in a human-dominated landscape

    Get PDF
    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions.Carnegie Corporation of New York to the Global Change and Sustainability Research Institute at the University of the Witwatersrand. ABAX Foundation, Henry and Iris Englund Foundation, National Lotteries Distribution Trust Fund, Mones Michaels Trust, Arne Hanson, and Deutsche Bank South Africa Foundation.http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-7758hb201

    Assessment of leopard translocations in South Africa

    Get PDF
    DATA AVAILABILITY STATEMENT : The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.Translocations are commonly employed to mitigate human–carnivore conflict but rarely evaluated, resulting in conflicting reports of success, particularly for leopards (Panthera pardus). We evaluate the status of available leopard translocation data, the factors driving the intentional removal of leopards, and the potential causal factors associated with successful and failed translocation events. We obtained data on 60 leopard translocation events across five provinces in South Africa between 1994 and 2021. We considered a successful translocation outcome when (1) the animal was moved outside of its original home range, (2) the animal established a newhome range away fromthe capture site, (3) no substantive livestock losses were linked to the translocated animal in the post-releasemonitoring period, and (4) the animal survived at least 6months post-translocation. Ifmortality occurred due to factors that were equally likely to impact resident individuals and were unrelated to the translocation event (e.g., poaching), the event was not considered a failed effort. Most translocations were the result of human–carnivore conflict (HCC; 82%, n = 49), stressing the high prevalence of HCC and the importance of advocating preventative conflict mitigation efforts to conserve leopards. The leopards were moved distances from 2.5 to 196.3 km (63.3 ± 51.7km). Forty (67%) translocation events had unknown outcomes, indicating the limited data available on translocation outcomes. This also indicates the disparity in the objectives of translocations by various entities involved with translocations and suggests that monitoring be a prerequisite for future translocations. Twenty events offered reliable outcomes by means of post-event monitoring, with seven (12%) considered successful, with three (5%) as failures, and with four (7%) not moved beyond their original home ranges, while six (8%) ended in unrelated deaths. The failed events were attributed to inter/intra-specific competition, and one animal returned to its original home range after a translocation distance of 68 km. Translocation success was strongly explained by translocation distance. We found that damage-causing leopards were successfully translocated under specific conditions, and longer translocation distances increase success. Translocations are commonly employed but are still poorlymonitored.We discuss basic standardized protocols to improve future leopard translocations (including pre- and post-monitoring) while advocating alternative non-lethal practices to reduce the prevalence of human–carnivore conflict.Hans Hoheisen Conservation Trust, Mary Oppenheimer and Daughters Foundation, National Department of Forestry, Fisheries and Environment, Development Bank of Southern Africa, Global Environmental Facility project managed by the United Nations Environmental Program: GEF Project identity number: 9382; Umoja No. 01333, Green Fund, United Nations Environmental Program, United Nations Development Program, GEF Small Grants Programme, National Lotteries Distribution Trust Fund, now called National Lotteries Commission, Project Number 73027, Landmark Foundation Trust, Henry and Iris Englund Foundation, Abax Foundation, Mones Michaels Trust, Felix Schneier Foundation, JDI, Brad Banducci and Arne Hanson.https://www.frontiersin.org/journals/conservation-scienceam2023Centre for Wildlife Managemen

    Carnivore conservation needs evidence-based livestock protection

    Full text link
    Carnivore predation on livestock often leads people to retaliate. Persecution by humans has contributed strongly to global endangerment of carnivores. Preventing livestock losses would help to achieve three goals common to many human societies: preserve nature, protect animal welfare, and safeguard human livelihoods. Between 2016 and 2018, four independent reviews evaluated >40 years of research on lethal and nonlethal interventions for reducing predation on livestock. From 114 studies, we find a striking conclusion: scarce quantitative comparisons of interventions and scarce comparisons against experimental controls preclude strong inference about the effectiveness of methods. For wise investment of public resources in protecting livestock and carnivores, evidence of effectiveness should be a prerequisite to policy making or large-scale funding of any method or, at a minimum, should be measured during implementation. An appropriate evidence base is needed, and we recommend a coalition of scientists and managers be formed to establish and encourage use of consistent standards in future experimental evaluations

    Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa

    Get PDF
    Apex predators play a critical role in maintaining the health of ecosystems but are highly susceptible to habitat degradation and loss caused by land-use changes, and to anthropogenic mortality. The leopard Panthera pardus is the last free-roaming large carnivore in the Western Cape province, South Africa. During 2011–2015, we carried out a camera-trap survey across three regions covering c. 30,000 km2 of the Western Cape. Our survey comprised 151 camera sites sampling nearly 14,000 camera-trap nights, resulting in the identification of 71 individuals. We used two spatially explicit capture–recapture methods (R programmes secr and SPACECAP) to provide a comprehensive density analysis capable of incorporating environmental and anthropogenic factors. Leopard density was estimated to be 0.35 and 1.18 leopards/100 km2, using secr and SPACECAP, respectively. Leopard population size was predicted to be 102–345 individuals for our three study regions. With these estimates and the predicted available leopard habitat for the province, we extrapolated that the Western Cape supports an estimated 175–588 individuals. Providing a comprehensive baseline population density estimate is critical to understanding population dynamics across a mixed landscape and helping to determine the most appropriate conservation actions. Spatially explicit capture–recapture methods are unbiased by edge effects and superior to traditional capture–mark–recapture methods when estimating animal densities. We therefore recommend further utilization of robust spatial methods as they continue to be advanced.The ABAX Foundation, Development Bank South Africa, Green Fund, United Nations Environmental Program, Global Environmental Facility, Henry and Iris Englund Foundation, National Lotteries Distribution Trust Fund, Mones Michaels Trust, Arne Hanson and the Deutsche Bank South Africa Foundation. MJS was supported by the National Research Foundation.https://www.cambridge.org/core/journals/oryx2020-03-30hj2020Mammal Research InstituteZoology and Entomolog

    Carnivore conservation needs evidence-based livestock protection

    Full text link
    Carnivore predation on livestock often leads people to retaliate. Persecution by humans has contributed strongly to global endangerment of carnivores. Preventing livestock losses would help to achieve three goals common to many human societies: preserve nature, protect animal welfare, and safeguard human livelihoods. Between 2016 and 2018, four independent reviews evaluated >40 years of research on lethal and nonlethal interventions for reducing predation on livestock. From 114 studies, we find a striking conclusion: scarce quantitative comparisons of interventions and scarce comparisons against experimental controls preclude strong inference about the effectiveness of methods. For wise investment of public resources in protecting livestock and carnivores, evidence of effectiveness should be a prerequisite to policy making or large-scale funding of any method or, at a minimum, should be measured during implementation. An appropriate evidence base is needed, and we recommend a coalition of scientists and managers be formed to establish and encourage use of consistent standards in future experimental evaluation
    corecore