150 research outputs found

    An overview of traumatic brain injury in adults

    Get PDF
    The epidemiology of traumatic brain injury (TBI) in high-income countries is changing, with falls in older adults as one of the leading causes. Disability after TBI results largely from cognitive, emotional and behavioural problems, as well as physical impairments. The consequences are long term and far-reaching, affecting not only the survivor and carers, but also incurring major socioeconomic costs to society. TBI is a heterogeneous disease, which has different causes, severity and encompasses a spectrum of pathological features. In part one of this two-part series, the author provides an overview of the different pathophysiological features of TBI. Part two will focus on management of adult patients with a severe TBI (Glasgow Coma Scale score ≤8) who require critical care, based on current evidence

    Severe traumatic brain injury in adults: a review of critical care management

    Get PDF
    This second of a two-part review on traumatic brain injury (TBI) describes management for adult patients with a severe TBI (post-resuscitation Glasgow Coma Scale score ≤ 8) who require critical care based on evidence and recommendations. Evidence-based, standardised practice aims to limit secondary injury in patients with TBI. Critical care management is based on maintaining optimal physiology to minimise secondary injury in the early acute phase. The aim is to save lives and improve the quality of outcome for survivors

    Clinical prediction models to inform individualized decision-making in subfertile couples : a stratified medicine approach

    Get PDF
    Funding This work was supported by a Chief Scientist Office Postdoctoral Training Fellowship in Health Services Research and Health of the Public Research (Ref PDF/12/06). The views expressed in this paper represent the views of the authors and not necessarily the views of the funding body.Peer reviewedPostprin

    Distributed Optimal Quantization and Power Allocation for Sensor Detection Via Consensus

    Get PDF
    We address the optimal transmit power allocation problem (from the sensor nodes (SNs) to the fusion center (FC)) for the decentralized detection of an unknown deterministic spatially uncorrelated signal which is being observed by a distributed wireless sensor network. We propose a novel fully distributed algorithm, in order to calculate the optimal transmit power allocation for each sensor node (SN) and the optimal number of quantization bits for the test statistic in order to match the channel capacity. The SNs send their quantized information over orthogonal uncorrelated channels to the FC which linearly combines them and makes a final decision. What makes this scheme attractive is that the SNs share with their neighbours just their individual transmit powers at the current states. As a result, the SN processing complexity is further reduced

    Quantized fusion rules for energy-based distributed detection in wireless sensor networks

    Get PDF
    We consider the problem of soft decision fusion in a bandwidth-constrained wireless sensor network (WSN). The WSN is tasked with the detection of an intruder transmitting an unknown signal over a fading channel. A binary hypothesis testing is performed using the soft decision of the sensor nodes (SNs). Using the likelihood ratio test, the optimal soft fusion rule at the fusion center (FC) has been shown to be the weighted distance from the soft decision mean under the null hypothesis. But as the optimal rule requires a-priori knowledge that is difficult to attain in practice, suboptimal fusion rules are proposed that are realizable in practice. We show how the effect of quantizing the test statistic can be mitigated by increasing the number of SN samples, i.e., bandwidth can be traded off against increased latency. The optimal power and bit allocation for the WSN is also derived. Simulation results show that SNs with good channels are allocated more bits, while SNs with poor channels are censored

    On the Analysis of Cellular Networks with Caching and Coordinated Device-to-Device Communication

    Get PDF
    In this paper, we develop a comprehensive analytical framework for cellular networks that are enhanced with coordinated device-to-device (D2D) communication, where the D2D devices are equipped with content caching capabilities. The base station (BS) coordinates the D2D communication by establishing a D2D link between the requesting user and the nearest D2D helper within the same cell if the latter contains the requested content, otherwise, the BS serves the user itself. The motivation behind restricting D2D pairs within a macro cell is to make coordinated D2D communication realizable as the BS can keep track of the content of the devices without the increased overhead of inter-BS coordination. This approach is similar to LTE direct, where D2D pairing is managed by the BS. We model the locations of BS and D2D helpers using a homogeneous Poisson point process (HPPP). The distribution of the distance between the tagged user and its neighboring D2D helper within the cell is derived using disk approximation for the Voronoi cell, which is shown to be reasonably accurate. We fully characterize the cellular and D2D coverage and the link spectral efficiency of such a network. Our results reveal that cache enabled D2D communication becomes more effective as the requesting user moves away from the BS and high performance gains can be achieved compared to conventional cellular networks, especially when the popularity distribution is skewed and most popular files are requested

    Cumulative live birth rates following blastocyst- versus cleavage-stage embryo transfer in the first complete cycle of IVF : a population-based retrospective cohort study

    Get PDF
    Acknowledgements: We thank the Human Fertilisation and Embryological Authority for permission to analyse their database, extracting the requested information and assisting with our queries in an efficient manner. We acknowledge the data management support of the Grampian Data Safe Haven (DaSH) and the associated financial support of NHS Research Scotland, through NHS Grampian investment in the Grampian DaSH. For more information, visit the DaSH website http://www.abdn.ac.uk/iahs/facilities/grampian-data-safe-haven.php. Funding: N.J.C. received a Wolfson Foundation Intercalated Degree Research Fellowship funded by the Wolfson Foundation, through the Royal College of Physicians. This work was supported by a Chief Scientist Office postdoctoral training fellowship in health services research and health of the public research (ref PDF/12/06). The views expressed here are those of the authors and not necessarily those of the Chief Scientist Office. The funders had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; or decision to submit the manuscript for publication.Peer reviewedPostprin

    Distributed Combining Techniques for Distributed Detection in Fading Wireless Sensor Networks

    Get PDF
    We investigate distributed combining techniques for distributed detection in wireless sensor networks (WSNs) over Rayleigh fading multiple access channel (MAC). The MAC also suffers from with path loss and additive noise. The WSN is modelled as a Poisson point process (PPP). Two distributed transmit combining techniques are proposed to mitigate fading; distributed equal gain transmit combining (ddEGTC) and distributed maximum ratio transmit combining (dMRTC). The performance of the previous methods is analysed using stochastic geometry tools, where the mean and variance of the detector’s test statistic are found thus enabling the fitting of the received signal distribution by a log-normal distribution. Surprisingly, simulation results show a that ddEGTC outperforms dMRTC
    corecore