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Abstract—We consider the problem of soft decision fusion in
a bandwidth-constrained wireless sensor network (WSN). The
WSN is tasked with the detection of an intruder transmitting an
unknown signal over a fading channel. A binary hypothesis testing
is performed using the soft decision of the sensor nodes (SNs).
Using the likelihood ratio test, the optimal soft fusion rule at the
fusion center (FC) has been shown to be the weighted distance
from the soft decision mean under the null hypothesis. But as
the optimal rule requires a-priori knowledge that is difficult to
attain in practice, suboptimal fusion rules are proposed that are
realizable in practice. We show how the effect of quantizing
the test statistic can be mitigated by increasing the number of
SN samples, i.e., bandwidth can be traded off against increased
latency. The optimal power and bit allocation for the WSN is also
derived. Simulation results show that SNs with good channels are
allocated more bits, while SNs with poor channels are censored.

I. INTRODUCTION

Distributed detection has been attracting significant interest
in the context of WSNs [1] and [3]. This is due to the flexibility
of WSNs, which can be seamlessly deployed over a wide geo-
graphic area for military monitoring and surveillance purpose
[2]. However, WSNs suffer from constrained bandwidth and
limited on-board power. This poses challenges in the design of
distributed detection algorithms, especially when the intruder’s
signature is unknown to the WSN. The main issue is to
improve the detection by fusing the measurements provided
by various SNs in a manner that efficiently utilizes the scarce
bandwidth and overcomes the limitations of a fading wireless
channel.

The problem of decentralized detection in bandwidth con-
strained sensor networks has been addressed in [4], where
the authors investigated the design of sensor messages sent
to the FC that minimize the error probability. The problem
of detecting a known deterministic parameter is investigated
in [5] under restricted channel capacity. The channel fading
effect on distributed detection was tackled in [6]. In [7],
the authors addressed both issues of limited bandwidth and
channel imperfections. They optimized the transmission power,
which consequently dictated the number of allocated bits, for
the detection of a known signal.

In this paper, we consider the detection of an unknown
signal, which is the case in many WSN applications. We
find the optimal fusion rule for energy-based soft decision,

through the use of the likelihood ratio test. However, it turns
out that this rule is difficult to implement in practice. So we
will suggest realizable suboptimal fusion rules that weight
the soft decisions of the SNs based on the measurement’s
quality. Furthermore, a linear optimal fusion rule is derived
that can serve when the probability distributions of the soft
decisions are not known a-priori. Similarly, a simpler fusion
rule is proposed based on the linear rule. Then, the previous
algorithms are revisited under noisy, flat fading channels with
limited bandwidth. Finally, the SN’s transmitted powers are
optimized to achieve the best probability of detection.

Section II presents the system model. Soft decision fusion
rules are proposed in Section III. The quantization effect is
discussed in Section IV and the optimal power allocation is
derived in Section V. Simulation results are given in Section
VI and conclusions are presented in Section VII.

II. SYSTEM MODEL

Consider a WSN with M sensor nodes reporting to a FC
tasked with the detection of any intruders. The intruder leaves a
signature signal that is unknown to the WSN but it is assumed
to be deterministic. The ith SN collects N samples that are
corrupted by additive white Gaussian noise (AWGN) with
zero mean and known variance σ2

i . So, the measured signal
takes one of the following forms, depending on the underlying
hypothesis:

H0 : xi (n) = wi (n) (1)

H1 : xi (n) = si (n) + wi (n) (2)

where n = 1, 2, . . . , N , i = 1, 2 . . . ,M , xi(n) is the nth

sample of the measured signal at the ith sensor, si(n) is
the intruder’s signature signal and wi(n) ∼ N (0, σi

2) is the
AWGN. Furthermore, the noise samples are assumed to be
identically and independently distributed (iid) across time and
space.

For optimal detection, the SNs should send their measure-
ments to the FC, where the ultimate detection decision about
the intruder’s presence will be made. However, this approach is
not always feasible in the context of WSNs due to the limited
bandwidth available. Thus, the WSN adopts a distributed
detection algorithm in which the SNs send their quantized
soft decisions (i.e., the quantized local test statistics) to the
FC, which combines them to arrive at the global decision.



Since the intruder’s signal is unknown at the SNs, the optimal
detector in this case would be the energy detector, which is
implemented at the ith SN as follows:

Ti =

N
∑

n=1

|xi (n)|2 . (3)

The local soft test statistic Ti is then quantized with Li

bits and transmitted to the FC with power pi over a wireless
channel. The channel suffers from zero mean AWGN with a
variance of ζi. Moreover, the wireless channel between the ith

SN and the FC experiences flat fading with a channel gain hi

(also assumed to be iid). The number of quantization bits at
the ith SN must satisfiy the channel capacity constraint:

Li ≤
1

2
log2

(

1 +
pih

2
i

ζi

)

bits, i = 1, 2, . . . ,M. (4)

We will assume that the maximum channel capacity is
utilized by the SNs. So our objective is to find the best soft
fusion rule first, and then optimize the allocated power to
maximize the detection probability.

III. SOFT DECISION FUSION RULES

In this section, the optimal soft decision fusion rule is
investigated given infinite bandwidth for each WSN, i.e., no
quantization is required. However, it turns out that the optimal
rule requires prior information about the signal’s energy, which
cannot be known in practice. Hence, suboptimal rules are
proposed as an implementable alternative.

A. Optimal Fusion Rule

Given the local soft test statistic defined in (3), the optimal
fusion rule follows from the likelihood ratio test:

LRT (T ) =
p {T1, T2, ..., TM |H1}
p {T1, T2, ..., TM |H0}

≥ γ (5)

where p {T1, T2, ..., TM |Hj} is the joint probability distribu-

tion of local soft decisions under the jth hypothesis. However,
Ti has a χ2 distribution under H0 and a non-central χ2 under
H1, which means evaluation of the LRT in (5) is complicated.
Consequently, we evoke the central limit theorem to simplify
the distribution of Ti when N is sufficiently large. So the
distribution of any Ti can be adequately approximated by a
Gaussian distribution with the following mean and variance:

E {Ti|H0} = Nσ2
i , Var {Ti|H0} = 2Nσ4

i (6)

E {Ti|H1} = Nσ2
i (1 + ξi) ,Var {Ti|H1}=2Nσ4

i (1+2ξi)

(7)

where ξi =
N
∑

n=1
s2i (n) /Nσ2

i is the SNR at the ith SN.

Since the noise at different SNs is independent, it can easily
be shown [11] that the log-likelihood ratio test (LLR) takes the
form

Tf =
M
∑

i=1

(

(

Ti −Nσ2
i

)2

2Nσ4
i

−
(

Ti −Nσ2
i (1 + ξi)

)2

2Nσ4
i (1 + 2ξi)

)

≥ γ′

(8)

where γ′ = 2 ln

(

M
∏

i=1

γ

( √
2Nσ4

i√
2Nσ4

i
(1+2ξi)

))

.

The LLR can be further simplified by completing the
square in (8) to yield

Tf =

M
∑

i=1

ai (Ti − bi)
2

(9)

ai =
ξi

Nσ4
i (1 + 2ξi)

(10)

bi =
Nσ2

i

2
. (11)

The fusion rule in (9) has an interesting interpretation. It
is, in fact, the weighted distance in the M -dimensional space
between the local soft test statistic and half of its mean under
the null hypothesis (see (6)). It is also clear that SNs with
lower noise get more weight in the fusion process. Another
interesting note here is that at high SNR (ξi) the weight ai
depends only on the noise power at the SN and not on the
measured signal energy.

B. Suboptimal Fusion Rules

Now since the optimal fusion rule in (9) requires the exact
knowledge of the SNR (ξi), it cannot be realized in practice.
However, its structure can be used to formulate implementable
suboptimal rules. So now we propose three suboptimal rules:
weighted fusion, equal fusion and optimum linear fusion.

1) Weighted and Equal Fusion Rules: The weighted fusion
rule takes the same structure as (9). However (for large ξi) ai
in (10) is replaced by awi = 1/2Nσ4

i and we let bwi = bi. This
rule approaches the optimal one when the SNR is large, as
discussed earlier.

As for the equal fusion rule, equal weight is given for all
the SNs, i.e., aei = 1 for all i = 1, 2, · · · ,M . Also, bei = bi.

2) Optimum Linear Fusion Rule: Now we examine the
(sub-optimal) linear fusion rule:

T l
f =

M
∑

i=1

αiTi. (12)

and the optimal weights to maximize the probability of detec-
tion are

αi =
ξi

Nσ2
i (1 + 2ξi)

. (13)

Due to the lack of space however, the proof is omitted but a
detailed discussion can be founded in [11]. However, the above
weights are not realizable due to requiring a-priori knowledge
of ξi.

IV. QUANTIZED SOFT DECISION FUSION

The previous fusion rules assume the availability of an
infinite bandwidth to send the exact Ti. So let the quantized

test statistic (T̂i) at the ith sensor be modeled (with Li bits)
as

T̂i = Ti + vi (14)

where vi
1 is the quantization noise with uniform distribution

in the interval [−B,B] and variance

σ2
vi

=
B2

3× 22Li
. (15)

1vi in (14) is the quantization noise independent of wi (n) (in (1) and (2))
for all n and i.



However, the distribution of T̂i can be approximated [11]
by a Gaussian distribution with mean and variance:

E
{

T̂i|H0

}

=Nσ2
i , Var

{

T̂i|H1

}

=2Nσ4
i (1 + 2ξi)+σ2

vi

E
{

T̂i|H1

}

= Nσ2
i (1 + ξi) ,Var

{

T̂i|H0

}

=2Nσ4
i +σ2

vi
.

(16)

A. Quantized Optimal/Suboptimal Fusion Rule

Since the T̂i’s are now Gaussian, then in a similar manner
to Section III, the log-likelihood ratio test with quantization
can be shown to be

T q
f =

M
∑

i=1







(

T̂i −Nσ2
i

)2

2Nσ4
i + σ2

vi

−

(

T̂i −Nσ2
i (1 + ξi)

)2

2Nσ4
i (1 + 2ξi) + σ2

vi






≥γ′′

(17)

where γ′′ = 2 ln

(

M
∏

i=1

γ

(

√

2Nσ4

i
+σ2

vi
√

2Nσ4

i
(1+2ξi)+σ2

vi

))

. As before,

(17) can be now written in the following form

T q
f =

M
∑

i=1

aqi

(

T̂i − bqi

)2

(18)

aqi =
ξi

Nσ4
i

(

1 + 2ξi +
σ2
vi

2Nσ4

i

)(

1 +
σ2
vi

2Nσ4

i

) (19)

bqi =
Nσ2

i

2
− σ2

vi

4σ2
i

. (20)

Note that T q
f → Tf as σ2

vi
→ 0 for all i. Consequently,

aqi → ai and bqi → bi under the previous condition as well.
More interestingly however, is that T q

f → Tf as N → ∞,

regardless of σ2
vi

. This implies that bandwidth can be saved
but at the expense of increasing both the number of collected
measurements and also the detection delay.

As for the suboptimal (quantized) fusion rule, it can be
easily shown that

awq
i =

1

Nσ4
i

(

1 +
σ2
vi

2Nσ4

i

)2 (21)

aeq = 1 and beq = bwq = bqi .

B. Quantized Optimal Linear Fusion Rules

The quantized version of the linear fusion weights in (13)
can be shown to be [11]

αq
i =

ξi

2σ2
i

[

1 + 2ξi +
σ2
vi

Nσ2

i

] . (22)

If the SNR is large, i.e., when either σ2
vi

→ 0 or N → ∞
then it follows that αq

i → αi.

V. OPTIMUM SENSOR TRANSMIT POWER ALLOCATION

The performance of the proposed quantized fusion rules
approach the performance of their unquantized counterparts if
the number of (test statistic) bits is sufficiently large. However,
this entails a large transmission power as predicted by (4).
So, we desire to strike a trade-off between the fusion rule’s
performance and transmit power. To this end, we first need to
adopt an optimization criterion. A natural one is the probability
of detection, which depends on the distribution of the fusion

rule. So letting Ui =
(

T̂i − bi

)2

then the optimum fusion rule

can be written as

T q
f =

M
∑

i=1

aqiUi. (23)

The mean and variance of Ui under H0 and H1 are now
given in (24). Using the central limit theorem, T q

f can be
approximated by a Gaussian distribution

T q
f ∼







N
(

E
{

T q
f |H0

}

,Var
{

T q
f |H0

})

under H0

N
(

E
{

T q
f |H1

}

,Var
{

T q
f |H1

})

under H1

(25)

where

E
{

T q
f |H0

}

=

M
∑

i=1

aqiE {Ui|H0}

E
{

T q
f |H1

}

=

M
∑

i=1

aqiE {Ui|H1}

Var
{

T q
f |H0

}

=

M
∑

i=1

(aqi )
2
Var {Ui|H0}

Var
{

T q
f |H1

}

=

M
∑

i=1

(aqi )
2
Var {Ui|H1} .

(26)

It can be readily shown that the detection probability as a
function of the false alarm probability has the form

Pd = Q









Q−1 (Pfa)

√

Var
{

T q
f |H0

}

−Ψ

√

Var
{

T q
f |H1

}









(27)

where Q(·) is the Q-function and Ψ = E
{

T q
f |H1

}

−
E
{

T q
f |H0

}

. The probability of detection implicitly depends

on the transmission power through the relationships (24) and
(26). Based on this, we can optimize the transmission powers
(pi) to maximize Pd under the constraint of a maximum
aggregate transmit power budget (Pt):

popt = arg max
p

Pd (p)

subject to

M
∑

i=1

pi ≤ Pt for pi ≥ 0, i = 1, . . . ,M

(28)
where p = [p1, p2, . . . , pM ]. Now (28) is difficult to solve
and there is no closed form solution. Hence, we propose a
numerical solution by adopting the spatial branch-and-bound



E {Ui|H0} = 2Nσ
4

i +N
2
σ
4

i + σ
2

vi
− 2biNσ

2

i + bi
2
, Var {Ui|H0} = Var

{

T̂i|H0

}[

4N
2
σ
4

i + 2Var

{

T̂i|H0

}

+ 4b
2

i − 8Nbiσ
2

i

]

E {Ui|H1}=E

{

T̂i|H1

}

2

+Var

{

T̂i|H1

}

− 2bi
(

Nσ
2

i +Nσ
2

i ξi
)

+ b
2

i

Var {Ui|H1}=4E

{

T̂i|H1

}

2

Var

{

T̂i|H1

}

+ 2Var

{

T̂i|H1

}

2

+ 4b
2

iVar

{

T̂i|H1

}

− 8biE
{

T̂i|H1

}

Var

{

T̂i|H1

}

(24)

strategy [8] using the YALMIP optimization tools [9]. In the
first step of the algorithm, we start by applying a standard
nonlinear solver to obtain a locally optimal solution and then
set it as an upper bound on the achievable objective. Secondly,
in each node, a convex relaxation of the model is derived, and
the resulting convex optimization problem is solved. We then
assign this as a lower bound. Bound tightening using [9] is
applied iteratively to detect and eliminate redundant constraints
and variables, and tighten the bounds where possible. The
algorithm outline is summarized in Algorithm1 [11].

The aim of the algorithm is to obtain the global minimum

of the function β (p) =
Q−1(Pfa)

√

Var{T q

f
|H0}−Ψ

√

Var{T q

f
|H1}

over the

solution space ℘start where p ∈ ℘start. For any ℘ ⊆ ℘start

we define Flb (the upper bound) and Fub (the lower bound)
as functions that satisfy: Flb (℘) ≤ Fmin (℘) ≤ Fub (℘).
Then, the global optimum solution β∗ = Fmin (℘start) =
infp∈℘start

β (p).

VI. SIMULATION RESULTS

We simulate a WSN of M SNs detecting an intruder
with si(n) = A, where A = 0.1. The communication noise
variances are arbitrarily set to ζi = 0.1 for all i = 1, 2, · · · ,M
(for simplicity). The measurement noise variances are gen-
erated randomly and used throughout all the simulations.
The average measurement SNR for the network is defined

as ξa = 10 log10

(

1
M

M
∑

i=1

ξi

)

. In all simulations we assume

perfect knowledge of ξi. Fig. 1 shows the receiver operating
characteristic for six different fusion rules. It is clear that the
optimal fusion rule attains the best performance for (ξa = −8.5
dB) whereas the worst performance is that of the equal weight
linear combining rule. However, all the rules converge when
the Pfa increases. In Fig. 2 the effect of the number of
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Fig. 1. Receiver operating characteristics of six different fusion rules
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measurement samples (N ) on Pd is shown at a fixed Pfa.
Obviously, as N increases Pd improves for all algorithms.
Interestingly, the optimal linear fusion rule outperforms the
suboptimal LRT-based one. This is explained by the structure
of (21) where for large (but finite) N the effect of σ2

vi
(quantization noise variance) is still noticeable. A similar trend
is noticed in Fig.3, in which Pd is plotted against the number
of SNs, (M ), for a fixed N . The Pd performance of both
LRT-based and linear combining schemes as a function of
the average SNR (ξa) is shown in Fig. 4. Fig. 5 on the
other hand, exhibits the effect of the transmission power pi
on Pd. Increasing pi leads to a larger number of allocated
bits, through (4), and consequently less quantization vari-
ance, which ultimately improves the detection performance.
Interestingly, the dependence of Pd on pi is alleviated when
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N is increased, since the effect of the quantization noise is
mitigated as predicted by (19) and (22). In Fig. 6, we report
the optimized sensor transmit power and the corresponding
number of bits allocated to quantize Ti by applying the branch
and bound algorithm [8]. Clearly we allocate more power and
bits to the best channels. However, note that the power and
bit allocation is also affected by the weights aqi in (19) which
are a function of the signal to noise ratio ξi. For instance,
consider sensor 12 which has a relatively good channel gain,
but the corresponding local ξi is bad. Hence, it will allocate a
relatively small amount of the transmit power. Those SNs with
bad channels are allocated zero bits, i.e., they will be censored
or prevented from transmission.

VII. CONCLUSION

We have shown that the optimal fusion (see (9)) for energy-
based soft decisions is actually the weighted distance of the
decisions from their mean under the null hypothesis. Realizable
suboptimal fusion rules derived from the optimal one are
proposed as well, in which more weight in the actual fusion are
given to decisions with better sensing quality. We show that
the effect of quantization on the detection performance can
be mitigated by increasing the number of measurements (N ),
or equivalently incurring more delay in the system. Finally,
the SN’s transmission power has been optimally allocated.
Intuitively, more power is given to SNs having better channel
gains and consequently increased number of bits.
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