51 research outputs found

    PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases1

    Get PDF
    The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC1 and VIP/PACAP receptor type 2 (VPAC2) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC1 receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC2 receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC1 receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2′,5′-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC1 receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway

    An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression.

    Get PDF
    Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection

    An immune dysfunction score for stratification of patients with acute infection based on whole-blood gene expression

    Get PDF
    Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection.peer-reviewe

    Rūzbihān, Sad al-Dīn and the Āstāna of USĀm al-Dīn Ibrāhīm: A technical study of a Kulliyyat of Sadi from early 16th-century Shiraz

    No full text
    This technical study aims to describe the visual and material aspects of a Bodleian Library copy of the Kulliyyāt of Sadī produced at the Āstāna of USĀm al-Dīn Ibrāhīm in Shiraz at the beginning of the 16th century. The manuscript shows skilled craftsmanship and unity of design in all its constituent parts: from the original boards decorated with stamped motifs and doublures to the double page illustration; the double page illumination; the 28 illuminated headings and other ornamental features. The close examination of this manuscript has also unveiled the name of the artist Sad al-Dīn concealed in the figurative painting he so skilfully created whilst Rūzbihān's name appears concealed in the illuminated page

    Rūzbihān, Sad al-Dīn and the Āstāna of USĀm al-Dīn Ibrāhīm: A technical study of a Kulliyyat of Sadi from early 16th-century Shiraz

    No full text
    This technical study aims to describe the visual and material aspects of a Bodleian Library copy of the Kulliyyāt of Sadī produced at the Āstāna of USĀm al-Dīn Ibrāhīm in Shiraz at the beginning of the 16th century. The manuscript shows skilled craftsmanship and unity of design in all its constituent parts: from the original boards decorated with stamped motifs and doublures to the double page illustration; the double page illumination; the 28 illuminated headings and other ornamental features. The close examination of this manuscript has also unveiled the name of the artist Sad al-Dīn concealed in the figurative painting he so skilfully created whilst Rūzbihān's name appears concealed in the illuminated page

    Efficient bunyavirus rescue from cloned cDNA

    Get PDF
    Bunyaviruses are trisegmented, negative-sense RNA viruses. Previously, we described a rescue system to recover infectious Bunyamwera virus (genus Orthobunyavirus) entirely from cloned cDNA (Bridgen, A. and Elliott, R.M. (1996) Proc. Nat. Acad. Sci. USA 93, 15400–15404) utilizing a recombinant vaccinia virus expressing bacteriophage T7 RNA polymerase to drive intracellular transcription of transfected T7 promoter-containing plasmids. Here we report efforts to improve the efficiency of the system by comparing different methods of providing T7 polymerase. We found that a BHK-derived cell line BSR-T7/5 that constitutively expresses T7 RNA polymerase supported efficient and reproducible recovery of Bunyamwera virus, routinely generating >107 pfu per rescue experiment. Furthermore, we show that the virus can be recovered from transfecting cells with just three plasmids that express full-length antigenome viral RNAs, greatly simplifying the procedure. We suggest that this procedure should be applicable to viruses in other genera of the family Bunyaviridae and perhaps also to arenaviruses
    corecore