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Abstract 
Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing 

millions of deaths globally each year. To alleviate this burden, improved prognostication and 

biomarkers of response are urgently needed. We investigated the use of whole blood 

transcriptomics for stratification of patients with severe infection by integrating data from 3,149 

samples of sepsis patients and healthy individuals into a gene expression reference map. We 

used this map to derive a quantitative sepsis response signature (SRSq) score reflective of 

immune dysfunction and predictive of clinical outcomes, which can be estimated using a 19-

gene signature. Finally, we built a machine learning framework, SepstratifieR, to deploy SRSq 

in sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification 

across diseases and revealing the physiological alterations linking immune dysregulation to 

mortality. Our method enables early identification of individuals with dysfunctional immune 

profiles, thus bringing us closer to precision medicine in infection. 

Introduction 
Infectious diseases result in considerable global morbidity and mortality.1 Notably, the recent 

H1N1 influenza2 and SARS-CoV-23 pandemics illustrate how individuals without significant 

risk factors can still develop critical illness following infection. In extreme cases, this can lead 

to sepsis, a dysregulated host response accompanied by major organ dysfunction4 which 

accounted for 11 million deaths in 2017 alone.5 This highlights the importance of better 
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understanding maladaptive host immune responses. In particular, it is fundamental to 

recognise which patient immune profiles are dysfunctional and amenable to interventions like 

immunomodulatory therapy or early organ support.  

High-throughput technologies can group individuals by molecular profile, thus enabling patient 

stratification.6 In sepsis, a number of patient subgroups (i.e. endotypes) haven been proposed 

based on whole blood leukocyte gene expression.7–11 We previously described two sepsis 

response signature (SRS) groups: SRS1, an immunocompromised profile showing increased 

risk of death, and SRS2, characterised by immunocompetency and reduced mortality.7 These 

also showed differential responses to corticosteroid treatment.12 Nevertheless, similar 

developments are lacking for the wider population of patients with infection, who do not always 

fulfil conventional sepsis criteria. Stratification methods applicable across multiple infecting 

pathogens, independently of severity or technological differences, are vital. Ideally, these 

should be used in conjunction with technologies with rapid turn-around suitable for point-of-

care testing.13,14  

We developed SepstratifieR, a machine learning framework which addresses these 

limitations. SepstratifieR was trained on data from 3,149 samples of sepsis patients and 

healthy volunteers encompassing three technological platforms. This makes it a highly flexible 

framework which is largely independent of technological differences, amenable to point-of-

care testing, and applicable to a broad range of infections. SepstratifieR achieves personalised 

risk prediction by deriving a score reflective of each patient’s level of immune dysfunction. We 

show that this score can model disease heterogeneity more accurately and advance outcome 

prediction. Finally, we demonstrate that SepstartifieR achieves clinically meaningful 

stratification in bacterial/viral sepsis, influenza, and COVID-19.  

Results 

A cross-platform transcriptional map of the host response in sepsis 
Sepsis endotypes have been extensively described using microarrays.7–10 However, it is 

unclear if they generalise to sequencing-based assays. We assessed whether our previously 

proposed SRS endotypes7 were detectable using RNA-seq by leveraging data from 134 

patients from the UK Genomic Advances in Sepsis (GAinS) study with both microarray and 

RNA-seq measurements available. We used canonical correlation analysis (CCA) to create a 

joint representation of both assays (Methods).15 In brief, CCA identifies linear combinations 

of variables (canonical dimensions) which maximise the correlation between two data sets, 

representing shared axes of variation. Based on labels known from previous studies7,8, we 
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demonstrated that the first canonical dimension (CC1) separated SRS1 from SRS2 patients 

(Figure 1A), suggesting that SRS endotypes are identifiable using RNA-seq. 

 

 
Figure 1. Construction of a reference map of gene expression in sepsis using data from three 
different platforms. A) Sparse canonical correlation analysis of samples with RNA-seq and microarray 
measurements in the GAinS study. Each dot represents a sample, with X and Y coordinates 
corresponding to the first canonical component as estimated from RNA-seq and microarray data, 
respectively. Marginal distributions are provided, with each histogram representing the distribution of 
either SRS1 (red) or SRS2 (blue) samples along the two canonical components. R = Pearson 
correlation coefficient; p = correlation p value estimated using a two-tailed T test. B) Contribution of 
each gene to the first canonical component (Y axis; i.e. gene loading) as estimated from microarray and 
RNA-seq data, respectively. Dots represent genes, ranked by increasing CC1 loading (X axis).  C) 
Scatter plot of CC1 gene loadings for each gene as calculated from microarray (X axis) and RNA-seq 
(Y axis) data. Each dot represents a gene. Black dots indicate genes in the Davenport signature. Red 
genes represent the top 1% genes with highest CC1 contribution in both assays. D) Correlation of gene 
expression measurements between microarray or RNA-seq (X axis) and qRT-PCR (Y axis) for all genes 
in the Davenport signature. Each dot represents a sample, with colours indicating its respective sepsis 
endotype. Lines represent the best linear fit. R = Pearson correlation coefficient; p = correlation p value 
estimated using a two-tailed T test. E) Reference map of gene expression in sepsis constructed based 
on the Davenport signature. Data from four different cohorts were integrated using mNN batch 
correction, followed by visualisation using PCA. Each dot represents a sample, with colours indicating 
its corresponding sepsis endotype. Grey dots represent samples in the test set, for which endotype is 
not known. Different shapes indicate the platform used for profiling each sample.  
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We previously proposed a 7-gene signature predictive of SRS.7,8 We now asked whether this 

signature was applicable to RNA-seq by assessing the contribution of these genes to CC1 

(Figure 1B). We observed significant contributions for 6 out of 7 genes (Figure 1C), 

demonstrating this signature is relevant to both microarray and RNA-seq. To assess if the 

signature can also be detected with rapid turn-around methods, we used quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) to profile these genes in 115 samples from 

the GAinS study7, of which 72 and 94 also had microarray and RNA-seq measurements, 

respectively (Methods and Supplementary Table 1). We observed a very high level of 

agreement between profiling methods (Figure 1D), suggesting that the signature could 

potentially be used for qRT-PCR-based point-of-care testing. 

 

An important limitation of our signature is its bias towards genes with higher expression in 

SRS2, with only one SRS1-associated gene (TDRD9). We reasoned that including more 

genes could make predictions more resilient. We combined our signature with a set of genes 

ranked amongst the top 1% with highest CC1 contribution (Figure 1C and Methods), which 

are expected to be robust to technological variation. This resulted in twelve additional genes, 

all of which showed comparable expression to the original signature (Supplementary Figure 
1A).7 We henceforth refer to the 7-gene set as the Davenport signature and to the 19-gene 

set as the Extended signature. 

 

We used these signatures to construct cross-platform reference maps of gene expression in 

sepsis. We compiled data from 1,044 patients in the GAinS study, profiled with up to three 

platforms, and integrated them based on our signatures. To make reference maps 

representative of a wider patient population, we also included three cohorts of healthy 

individuals (Supplementary Table 1). Integration was performed using mutual nearest 

neighbours (mNN), a method borrowed from single-cell omics which matches samples in one 

batch to their nearest neighbours in other batches (Methods).16 This resulted in two reference 

maps: the Davenport map, containing 3,264 samples (1,413 sepsis and 1,609 healthy), seven 

genes, and three modalities; and the Extended map, containing 3,149 samples (1,406 sepsis 

and 1,609 healthy), 19 genes, and two modalities. Samples in both reference maps clustered 

by endotype rather than technology, with the main axis of variation corresponding to a 

separation into healthy volunteer, SRS1, and SRS2 groups (Figure 1E). Thus, our reference 

maps capture a wide spectrum of transcriptional variation spanning health and critical illness.  

A classifier model for stratification of sepsis patients 
We then used these signatures to predict endotypes. We split our reference maps into training 

(n=909) and test (n=2,355) sets, which we used to train random forest classifiers for each 
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signature (Methods). Training sets contained all patient samples taken at ICU admission and 

for which SRS membership was known7,8 (n=639), as well as 270 randomly selected healthy 

volunteer samples, with all remaining samples allocated to the test set. Healthy volunteers 

were assigned to a newly defined SRS3 group. SRS3 is designed to capture healthy 

individuals, as well as patients in the low severity/recovery spectrum (i.e. transcriptionally 

closer to health). 

 

Cross-validation revealed high accuracy across all endotype classes (AUROCs > 0.97; Figure 
2A). This was recapitulated in the test set, with significant agreement between our predictions 

and previously proposed SRS labels for these samples.7,8 The Extended signature (Cohen’s 

Kappa = 0.91) marginally outperformed the Davenport signature (Cohen’s Kappa = 0.88). 

However, both reached a consensus for the majority of samples (97% and 84% agreement in 

microarray and RNA-seq, respectively; Supplementary Figure 1B). Predictions were 

consistent across technologies, with most samples assigned to the same SRS group 

regardless of profiling platform (Figure 2B). Thus, our models simultaneously achieve high 

accuracy and cross-technology applicability. 

 

We next assessed if our models recapitulated known gene expression differences between 

endotypes. Differential expression analysis (Methods) revealed upregulation of neutrophil and 

innate immunity genes (e.g. MMP8, GPR84, and CD177) in SRS1, as well as downregulation 

of T cell function and antigen presentation genes (e.g. CD27, CD6, CCR3, and HLA class II 

molecules; Figure 2C-D). The top SRS1-associated pathways were Toll-like receptor (TLR) 

signalling, cytokine production, and glycolysis. In contrast, SRS2 was associated with T cell 

receptor (TCR) engagement, CD28-costimulation, and IFN𝞬 signalling (Supplementary 
Figure 2A). This was supported by decreased lymphocyte and increased polymorphonuclear 

cell counts in SRS1 (Figure 2E). These observations agree with previous literature, 

demonstrating that our models distinguish biologically relevant molecular profiles.7–9 

 

Finally, we asked whether SRS groups differed in clinical outcome. SRS1 patients showed 

higher Sequential Organ Failure Assessment (SOFA) scores, indicative of more severe organ 

dysfunction (Figure 2F). In the RNA-seq cohort, this was accompanied by increased Acute 

Physiology and Chronic Health Evaluation (APACHE) II scores (Supplementary Figure 2B). 

Survival analysis (Methods) further revealed that SRS1 patients are at increased risk of 28-

day mortality (Figure 2G), demonstrating that our models can predict clinical outcomes. 
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Figure 2. Stratification of sepsis patients in the GAinS cohort based on whole blood gene 
expression. A) Receiver operating characteristic (ROC) curves showing the performance of a random 
forest classifier in leave-one-out cross-validation. Lines of different colour indicate classification 
performance for different sepsis endotype classes. Areas under each ROC curve (AUROCs) are 
presented alongside an estimated multi-class AUROC. B) The UpSet plot (bottom) and heatmap (top) 
show the agreement between endotype labels derived from different gene expression profiling 
platforms. Bar heights in the UpSet plot indicate the number of samples assigned to each category, with 
dots and lines showing different types of overlap. Bar colours represent the predicted endotype class 
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(horizontal bars) or whether there is agreement between labels derived from multiple modalities (vertical 
bars). Grey vertical bars indicate samples for which only one data modality was available. The colour 
scale in the heatmap indicates the overlap between two categories, as estimated using Jaccard 
indexes. C) Volcano plot showing differentially expressed genes between SRS1 and SRS2 groups. 
Each dot corresponds to a gene, for which its log-fold change (X axis) and log10 p value (Y axis) are 
indicated. Red dots represent genes significantly upregulated in the SRS1 endotype, with blue dots 
representing genes upregulated in the SRS2 group. Grey dots represent non-significant genes. Gene 
names were added to a subset of significantly differentially expressed genes of immune relevance. D) 
Correlation between log-fold changes between SRS1 and SRS2 estimated from microarray (X axis) 
and RNA-seq (Y axis) data. Each dot represents a gene. The identity line (red) is shown as a reference. 
Cor = Pearson correlation coefficient; p = correlation p value estimated using a two-tailed T test.  E) 
Box plots comparing cell counts between SRS groups in the microarray (top) and RNA-seq (bottom) 
GAinS cohorts. Each dot represents a sample from a sepsis patient, colour coded by sepsis endotype. 
Each patient may contribute up to three samples, obtained at different times following ICU-admission. 
Box plots were defined in terms of medians (central line) and interquartile range (IQR; upper and lower 
box limits), with whiskers extending by ±1.5 the IQR from the limits of each box. p = p values from T 
tests (top) and Kruskal-Wallis tests (bottom). F) Box plots comparing SOFA scores between SRS 
groups in the microarray (left) and RNA-seq (right) cohorts. Dots represent samples obtained at the 
latest available time point from each patient, colour coded by endotype. Box plots are defined in terms 
of medians and IQR, with whiskers extending by ±1.5 the IQR. p = p values from either a T test (left) 
and a Kruskal-Wallis test (right). G) Kaplan-Meier curves comparing the 28-day survival of sepsis 
patients in the SRS1 and SRS2 groups. SRS groups were defined using samples from the latest 
available time point for each patient. Lines represent average survival probabilities (Y axis) of each 
endotype over time (X axis), with shaded areas indicating 95% confidence intervals. Patient numbers 
are shown at the bottom; p = p value from log-rank tests. 
 

A quantitative score reflective of immune dysfunction 
Sepsis can be viewed as a spectrum of illnesses with varying severities17–19, which raises the 

possibility of modelling patients as a continuum. We did this by using diffusion maps 

(Methods), a method designed to embed samples into a low-dimensional space that reflects 

their original connectivity.20 The first diffusion component (DC1) separated samples into a 

progression which started at SRS3 and gradually transitioned towards the SRS2 and SRS1 

groups (Figure 3A and Supplementary Figure 3A). This provided evidence of the existence 

of a patient continuum.  

 

We used DC1 to derive a quantitative metric reflective of the position of individuals along this 

continuum, which we refer to as the quantitative sepsis response signature score (SRSq; 

Methods). SRSq is bound between 0 and 1, with lower values indicating a patient is 

transcriptionally closer to health and higher values indicating similarity to the highest extreme 

of SRS1 (Figure 3B). SRSq scores derived using our two gene signatures were highly 

correlated (Pearson correlation = 0.84). However, the extended signature achieved better 

separation of healthy volunteers (Supplementary Figure 3B). To make SRSq calculation 

more straightforward, we trained machine learning models to predict this variable. We 

subdivided samples into training and test sets (as defined above) and trained random forest 

models for each gene signature (Methods). Model performance was high in both cross-
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validation and the test set (RMSE = 0.028; Supplementary Figure 3D), demonstrating 

reliable SRSq prediction.   

 

We next investigated the molecular changes underlying SRSq. Both gene expression (Figure 
3C and Supplementary Figure 3D) and cell counts (Supplementary Figure 3E) changed 

linearly as a function of SRSq, with lymphocyte counts decreasing proportionally to it. While 

both SRS and SRSq captured similar gene expression programs (99.7% of genes differentially 

expressed between SRS1 and SRS2 were also associated with SRSq; Figure 3D), our 

analysis identified 4,121 SRSq-associated genes which were not significantly different 

between SRS endotypes (Figure 3C). This more than doubled the associated gene set, 

demonstrating the power of modelling patients as a continuum. 

 

We next investigated the relationship between SRSq and illness severity. We observed 

significant associations between SRSq and 28-day mortality (Methods) in both microarray 

and RNA-seq (Figure 3E), which were significant in Cox Proportional-Hazards models 

(Methods), even when accounting for age and source of sepsis (Figure 3F). Additionally, 

SRSq correlated with the severity of ICU-acquired infections (Figure 3G). Hazard ratios (HR 

= 2 and 1.6 in microarray and RNA-seq, respectively) indicated that a 0.1 increase in SRSq 

decreased patient survival as much as if the patient were a decade older. This illustrates the 

value of SRSq in risk estimation. 

 

We subsequently investigated the processes linking immune dysfunction and death. Mediation 

analysis is a statistical method which takes candidate hypotheses and tests their compatibility 

with existing data by simulating how response variables change when other variables are 

altered one at a time.21–23 This is roughly equivalent to a computational randomised 

experiment. Results from mediation analysis suggest probable causal mechanisms, thus 

supporting hypothesis generation. We applied mediation analysis to SRSq and clinical 

measurements (Methods and Supplementary Table 2), assuming a model where SRSq 

influences organ dysfunction (i.e. SOFA scores), in turn increasing mortality (Figure 3H). This 

enabled us to estimate the direct effect of SRSq on death (i.e. how much mortality would 

increase if SRSq was raised while keeping SOFA constant), as well as its mediation effect 

(i.e. how much mortality would increase if SOFA was raised while keeping SRSq constant). 

Almost all the effect of SRSq on mortality was mediated by organ dysfunction 

(Supplementary Figure 3F-G). 
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Figure 3. A quantitative score reflective of immune dysfunction and illness severity. A) Diffusion 
map plot showing the first two diffusion components based on the Extended reference map. Each dot 
represents a sample, with colours encoding endotype groups and shapes indicating the profiling 
platform used. B) Boxplots showing the distribution of quantitative sepsis response scores (SRSq) in 
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each cohort within our reference map. SRSq was calculated by min-max scaling the first component of 
the diffusion map. Box plots are stratified by cohort. Each dot represents a sample, colour coded by 
sepsis endotype. Box plots were defined in terms of medians (central line) and interquartile ranges 
(IQR; upper and lower box limits), with whiskers extending by ±1.5 the IQR from the limits of each box. 
p = p value from a Kruskal-Wallis test.  C) Top genes positively (top panels) and negatively (bottom 
panels) associated with SRSq. Each plot represents the expression level for the gene in question as 
measured using microarrays (log-VSN normalised intensities; Y axis) for different SRSq values (X axis). 
Each dot represents a sample, colour coded by sepsis endotype. D) Upset plot (bottom) and scatter 
plot (top) showing the agreement between differential gene expression along SRSq and differential 
gene expression between SRS1 and SRS2 endotypes. Bar heights in the UpSet plot indicate the 
number of genes called as differentially expressed in each comparison, with dots and lines showing 
different types of overlap. The scatter plot shows log-fold changes estimated between SRS1 and SRS2 
(X axis) and along SRSq (Y axis) in microarray samples from the GAinS study. Each dot represents a 
gene; Cor = Pearson correlation coefficient.  E) Association between SRSq and mortality in microarray 
(left) and RNA-seq (right) samples from GAinS. A sliding window was used to estimate the mortality of 
sets of samples with increasingly higher SRSq values. Dark dots represent 28-day mortality estimates 
and light lines show the associated 95% confidence intervals. F) Hazard ratio (HR) estimates obtained 
from applying a Cox Proportional Hazards model to microarray (left) and RNA-seq (right) samples in 
GAinS. Dots indicate the estimated HR for each variable, with lines showing 95% confidence intervals. 
G) Box plots showing the association between SRSq (Y axis) and ICU-acquired infection scores (ICU-
AI; Supplementary Table 2) in microarray (left) and RNA-seq (right) samples from GAinS. Each dot 
represents a sample, colour coded by sepsis endotype. Box plots were defined in terms of medians 
(central line) and interquartile ranges (IQR; upper and lower box limits), with whiskers extending by ±1.5 
the IQR from the limits of each box. ϐ = regression coefficient as estimated using proportional odds 
logistic regression (POLR); p = associated p value. H) Schematic diagram representing the structure of 
the causal model assumed for mediation analysis. Arrows represent hypothesised relationships, with 
arrow directions indicative of the direction of causality. Effect estimates from mediation analysis are 
provided for each arrow, along with their associated 95% confidence intervals and significance levels. 
I) Effect size estimates obtained from applying mediation analysis to microarray (left) and RNA-seq 
(right) samples in GAinS. Each row shows estimates obtained for a different clinical variable. Dots 
represent estimated effect sizes, with lines showing the associated 95% confidence interval. Solid and 
dotted lines represent effect sizes estimated with respect to samples with high SRSq (treatment 
condition) and low SRSq (control condition), respectively. ACME = Average Causal Mediation Effect; 
ADE = Average Direct Effect; p = mediation p value associated with ACME estimation. 
 

We next assessed the role of individual organs by performing mediation analysis on all 

subcomponents of SOFA. The effect of SRSq on death was mediated by alterations in mean 

arterial pressure, coagulation (platelet counts), and, to a lesser extent, renal function 

(creatinine; Figure 3H-I). In contrast, we found no evidence of liver or lung dysfunction 

mediating this effect (Figure 3I and Supplementary Figure 3H), despite a large proportion of 

our cohort consisting of pneumonia patients. This suggests that systemic consequences of 

maladaptive inflammation in these patients relate more directly to SRSq than does lung 

damage. 

SepstratifieR: a machine learning framework for patient stratification 
We next developed a software for SRS/SRSq prediction. We collected the models described 

above in an algorithmic framework called SepstratifieR. For a data set of interest, 
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SepstratifieR: 1) extracts expression measurements for all signature genes (i.e. the Davenport 

or Extended signature, as specified by the user); 2) aligns samples to the corresponding 

reference map using mNN; and 3) predicts SRS and SRSq using random forest classifiers 

(Figure 4). This can be achieved in a single line of code, as described in 

https://github.com/jknightlab/SepstratifieR. 

 

 
Figure 4. SepstratifieR’s construction and application to new data. Schematic representation of 
how the models within SepstratifieR were built (top panel) and how they are applied to new data (bottom 
panel). Publicly available data were used to construct sepsis reference maps based on small gene 
signatures by aligning different technologies into the same space. Next, random forest models were 
trained to predict SRS and SRSq, respectively. When applying SepstratifieR to a set of new samples, 
genes in the signature of interest are extracted and used to align the new samples to the sepsis 
reference map. After alignment, SRS and SRSq are predicted using pre-trained random forest models. 
 

We evaluated the performance of SepstratifieR in two cohorts of sepsis patients 

(Supplementary Table 1). Exploratory analysis of a study by Parnell et al.24 revealed a clear 

separation between patients and controls, with sepsis patients segregating into survivor and 

non-survivor groups (Supplementary Figure 4A). These groups correlated with 

SepstratifieR’s predictions, with 77% of SRS2 patients surviving, compared to only 42% of 

SRS1 patients. Moreover, 82% of the SRS3 group consisted of healthy volunteers 
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(Supplementary Figure 4B). These differences were also evident for SRSq, with elevated 

SRSq scores associated with higher APACHE II and mortality (Supplementary Figure 4C 
and I).  
 

Gene expression differences agreed with previous observations, with all top SRSq-associated 

genes in GAinS recapitulated in this cohort and a high correlation of effect sizes observed 

between studies (Supplementary Figure 4D-F). Increased SRSq correlated with upregulation 

of innate immune pathways (e.g. inflammasome and IL-1 signalling), and glycolysis, as well 

as downregulation of TCR signalling, CD28-costimulation, and antigen presentation 

(Supplementary Figure 4G). This was supported by a positive correlation between SRSq 

and neutrophil proportions (Supplementary Figure 4I). 
 

An important feature of this cohort was the availability of temporal information, with each 

patient profiled up to five times.24 This enabled us to model SRSq as a function of time and 

illness severity. While SRSq was constant in healthy individuals, it decreased over time in 

sepsis (Supplementary Figure 4H). This observation was driven by sepsis survivors (p value 

= 0.0032), with non survivors showing elevated SRSq scores throughout their disease 

trajectory (p value = 0.5). Thus, monitoring changes in SRSq over time might enable us to 

distinguish between different clinical trajectories.  

 

We then applied SepstratifieR to the Molecular Diagnosis and Risk of Sepsis (MARS) study.9 

MARS investigators previously described four endotypes, of which Mars1 showed higher 

mortality.9 Principal component analysis separated Mars1 patients along the first component 

(Supplementary Figure 5). In contrast, SRS groups predicted by SepstratifieR separated 

along the second component (Supplementary Figure 5A). Direct comparison revealed an 

overlap between SRS2 and Mars3, as well as an enrichment of Mars2 patients within SRS1. 

In contrast, 84% of the SRS3 group consisted of healthy volunteers (Supplementary Figure 
5B). Surprisingly, the Mars1 endotype did not correspond to any of the groups identified by 

SepstratifieR, suggesting it represents an orthogonal axis of variation unrelated to our gene 

signatures. Finally, differential expression analysis showed highly correlated effect sizes 

between studies (Pearson correlation = 0.83) and a similar set of differentially active pathways 

(Supplementary Figure 5C-E). 

 

At the clinical level, SRS1 patients in MARS showed a higher proportion of septic shock and 

elevated cardiovascular SOFA scores (Supplementary Figure 5F-G). However, we did not 

observe any differences in mortality between SRS groups (Supplementary Figure 5H) or 

along SRSq. This was surprising, given that SRS1 patients presented with higher rates of 
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shock and organ dysfunction. We hypothesised that unmeasured factors could be severing 

the link between SRSq and death. For example, confounding or moderator variables could 

influence SRSq and mortality in opposite directions (Supplementary Figure 5I). We tested 

this using mediation analysis (Methods). While the total effect of SRSq on death was not 

significant, we observed significant mediation effects of SRSq on death via shock and SOFA 

scores (Supplementary Figure 5J). This suggests that an increase in SRSq leads to higher 

probabilities of shock and organ failure, which in turn increases mortality, but that unobserved 

variables might counterbalance this effect. For example, corticosteroid treatment has been 

shown to worsen the outcome of SRS2 patients who would otherwise be at lower risk.12  

 

Thus, SepstratifieR can separate sepsis patients by molecular profile and predict illness 

severity in cohorts of different demographic and clinical composition. 

Stratification of H1N1 influenza patients by SRSq 
SepstratifieR was trained on samples spanning a range of severities, from health to critical 

illness. This should extend its applicability to patients who do not fulfil sepsis criteria. To test 

this, we deployed SepstratifieR in a cohort of patients hospitalised with influenza.25 Exploratory 

analysis revealed a gradation of illness severities, with patients separating by degree of 

oxygen supplementation (Figure 5A). This gradation agreed with increases in SRSq scores 

(Figure 5A). At the molecular level, we confirmed increased expression of innate immunity 

genes proportionally to SRSq (Figure 5B), with a significant correlation of effect sizes between 

sepsis and influenza (Pearson correlation = 0.69; Figure 5B-C). This provided evidence that 

SRSq is applicable to acute viral infection. 

 

We next tested the association between SRSq and illness severity. We observed an increase 

in SRSq proportional to the extent of oxygen supplementation, with patients on mechanical 

ventilation showing an SRSq about 0.2 units higher than patients without supplemental oxygen 

(Figure 5D). In addition, we found a decrease of SRSq over time, with most patients displaying 

SRSq values equivalent to healthy volunteers after 4 weeks (Figure 5E). Interestingly, while 

patients with high SRSq upon admission (> 0.4) showed variable rates of SRSq decrease, 

patients with low initial SRSq (< 0.4) showed no changes over time (Figure 5F). These 

observations demonstrate that SepstratifieR is applicable to influenza, even when patients do 

not fulfil traditional sepsis criteria, and reveal complex patient trajectories.   
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Figure 5. SRSq scores predict supplemental oxygen requirements and reveal temporal immune 
dynamics in H1N1 influenza. A) PCA plots based on whole blood transcriptomes. Each dot represents 
a sample, colour coded by: supplemental oxygen requirements (top panel), sepsis endotype (mid 
panel), and SRSq (bottom panel). Marginal distributions are provided where appropriate. B) Volcano 
plot (left) showing genes differentially expressed along SRSq. Each dot is a gene, with red indicating a 
positive and blue a negative association with SRSq. Grey dots represent genes which do not pass the 
significance threshold. Gene names are provided for a subset of significant genes with immune 
relevance. The associated scatter plot (right) shows the agreement between SRSq-associated log-fold 
changes in the GAinS study (X axis) and in Influenza patients (Y axis). Cor = Pearson correlation 
coefficient; p = correlation p value estimated using a two-tailed T test.  C) Top genes positively (top 
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panels) and negatively (bottom panels) associated with SRSq. Each plot represents the expression 
level for the gene in question (Y axis) for different SRSq values (X axis). Each dot represents a sample, 
colour coded by sepsis endotype. D) Box plots showing the association between SRSq (X axis) and 
supplemental oxygen requirement (Y axis). Each dot represents a sample. Box plots were defined in 
terms of median and IQR, with whiskers extending by ±1.5 the IQR from the limits of each box. Overall 
differences in SRSq distribution were tested using a Kruskal-Wallis test, followed by Dunn’s post-hoc 
test for each combination of categories (*** indicates a Bonferroni-adjusted Dunn’s test p < 0.01; n.s. 
Indicates a Bonferroni-adjusted Dunn’s test p > 0.05). E) Box plots showing the association between 
SRSq and time since patient admission. Each dot represents a sample, colour coded by sepsis 
endotype. Samples are stratified by oxygen requirement. Box plots are defined in terms of median and 
IQR, with whiskers extending by ±1.5 the IQR. p = p value from Kruskal-Wallis tests. F) Line plot 
showing changes of SRSq (Y axis) over time (X axis). Each dot represents a sample, colour coded by 
sepsis endotype. Lines join together samples from the same patient and are coloured based on the 
sepsis endotype assigned to that patient upon admission. 

Stratification of COVID-19 patients by SRSq 
Finally, we applied SepstratifieR to two COVID-19 cohorts: the COVID-19 Multi-Omic Blood 

Atlas (COMBAT)26 and the Deutsche COVID-19 Omics Initiative (DeCOI; Supplementary 
Table 1).27 In both instances, whole-transcriptome analysis showed a clear separation 

between patients and controls (Figure 6A and Supplementary Figure 6A). In COMBAT, 

patients further separated by severity (Figure 6A). While 90% of healthy volunteers in DeCOI 

were assigned to SRS3, 80% of COVID-19 samples were classified as either SRS1 or SRS2 

(Supplementary Figure 6B). In COMBAT, the SRS3 group contained a mixture of healthy 

volunteers and community COVID-19 cases, who were never hospitalised. In contrast, SRS2 

and SRS1 were enriched for patients with severe illness and in critical care, respectively 

(Figure 6B). SRSq increased proportionally to illness severity, with patients in critical care 

showing an SRSq 0.7 units higher than community cases (Figure 6C). This was recapitulated 

in DeCOI (Supplementary Figure 6C). 

 

We next compared transcriptional programs between sepsis and COVID-19. Differential 

expression analysis identified a similar set of SRSq-associated genes in both conditions 

(Supplementary Figure 6D-E and Supplementary Figure 7A-B). High SRSq scores in 

COVID-19 were associated with downregulation of antigen presentation, TCR signalling, and 

CD28-costimulation, as well as upregulation of TLR signalling, IL-1 signalling, and glycolysis 

(Supplementary Figure 6F and Supplementary Figure 7C). Furthermore, SRSq positively 

correlated with neutrophil and negatively correlated with lymphocyte counts (Figure 6D and 

Supplementary Figure 6G). Interestingly, elevated SRSq scores in COVID-19 were also 

associated with type I interferon signalling, a pathway not observed in sepsis.  
 
We next evaluated the utility of SRSq for outcome prediction. SRSq was significantly 

associated with C reactive protein (CRP), respiratory function (P/F ratios), and SOFA scores, 
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as well as with pneumonia indexes estimated by DeCOI investigators (Figure 6E and 

Supplementary Figure 6H). To assess if this resulted in differential outcomes, we evaluated 

the relationship between SRSq and 28-day mortality in COMBAT. While all patients with SRSq 

< 0.6 survived, we observed a sharp and linear increase in mortality in patients with SRSq > 

0.6 (Figure 6F). This association was significant in a Cox Proportional-Hazards model (HR = 

3.1 per 0.1-unit increase in SRSq), even when accounting for age (Figure 6G). Consequently, 

SRSq is predictive of clinical outcomes. 

 

Finally, we performed mediation analysis assuming that immune dysfunction leads to higher 

rates of organ failure, in turn increasing mortality (Figure 6H-I). Surprisingly, we found no 

evidence of total SOFA scores mediating the effect of SRSq on death. Instead, this effect was 

entirely explained by respiratory function (i.e. P/F ratios; Figure 6H-I). While this analysis is 

limited by sample size, it suggests marked differences between causes of death in sepsis and 

COVID-19. In particular, in COMBAT, where SARS-CoV-2 infected patients span a wider 

severity range, respiratory failure plays a more prominent role, presumably because major 

systemic inflammation is not as prevalent. 

 

In summary, SRSq is a quantitative score reflective of immune dysfunction and applicable to 

a variety of infections, including COVID-19. Elevated SRSq scores indicate decreased 

lymphocyte function and antigen presentation, increased neutrophil counts and TLR 

signalling, more severe illness, and higher likelihood of poor outcomes. This is likely explained 

by alterations in coagulation and blood pressure in sepsis, but by respiratory failure in COVID-

19. These factors, possibly combined with a differential response to immunomodulatory 

therapy, increase patient mortality (Figure 6J).  
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Figure 6. SRSq scores predict severity of illness and pinpoint mediators of morality in 
COVID-19. A) PCA plot based on whole blood transcriptomes. Each dot represents a sample, colour 
coded by its clinical severity group. Marginal distributions are provided. B) Heatmap showing the 
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agreement between sepsis endotypes and clinical severity groups. Colours represent the level of 
agreement between two categories, as estimated using Jaccard indexes. C) Box plots showing the 
association between SRSq (X axis) and clinical severity (Y axis). Each dot represents a sample. Box 
plots were defined in terms of median and IQR, with whiskers extending by ±1.5 the IQR from the limits 
of each box. p = p value from a Kruskal-Wallis test. D) Association between SRSq (X axis) and cell 
counts (Z-scored; Y axis). Each dot represents a sample, coloured by sepsis endotype. Lines indicate 
the best linear fit, with shaded areas showing their associated 95% confidence intervals. Cor = Pearson 
correlation coefficient; p = correlation p value estimated using a two-tailed T test. E) Association 
between SRSq (X axis) and clinical variables (Y axis). Each dot represents a sample, coloured by sepsis 
endotype. Lines indicate the best linear fit, with shaded areas showing their associated 95% confidence 
intervals. Cor = Pearson correlation coefficient; p = correlation p value estimated using a two-tailed T 
test. F) Association between SRSq and mortality. A sliding window was used to estimate the mortality 
of sets of samples with increasingly higher SRSq values. Dark dots represent 28-day mortality estimates 
and light lines show the associated 95% confidence intervals. G) Hazard ratio (HR) estimates obtained 
from a Cox Proportional Hazards model. Dots indicate the estimated HR for each variable, with lines 
showing 95% confidence intervals.  H) Effect size estimates obtained from mediation analysis, using 
total SOFA score (left) and P/F ratio (right) as mediator variables. Dots represent estimated effects, with 
lines showing their associated 95% confidence interval. Solid and dotted lines represent effect sizes 
estimated with respect to samples with high SRSq (treatment condition) and low SRSq (control 
condition), respectively. ACME = Average Causal Mediation Effect; ADE = Average Direct Effect; p = 
mediation p value associated with ACME estimation.  I) Schematic diagram representing the causal 
model inferred from mediation analysis. Arrows represent causal relationships, with arrow directions 
indicative of the direction of causality. Effect estimates from mediation analysis are provided for each 
arrow, along with their 95% confidence intervals and significance levels. J) Graphical summary of SRSq 
and its biological interpretation.  

Discussion 
We introduced SepstratifieR, a collection of models for stratification of patients with acute 

infection. SepstratifieR can be used in conjunction with numerous gene expression profiling 

methods and deployed across infections, successfully separating patients by severity and 

predicting clinical outcomes. 

 

Our study addresses long-standing challenges. Firstly, it furthers our ability to identify 

endotypes at point of care. While this has been achieved in other diseases like inflammatory 

bowel disease14,28 and asthma13, similar methods are lacking for infectious disease. 

SepstratifieR provides a framework which can be used in conjunction with qRT-PCR testing, 

but remains applicable to full-transcriptome technologies. Secondly, SepstratifieR’s ability to 

model patients as a continuum makes it useful across a range of infections, independently of 

patients fulfilling sepsis criteria. This suggests that sepsis is one extreme along a spectrum of 

immune dysregulation. Interestingly, it was previously thought that systemic inflammatory 

response syndrome (SIRS), sepsis, and septic shock formed a continuum17, but evidence of 

different molecular processes operating in these conditions led to SIRS being removed as a 

diagnosis in Sepsis-3.29,30 While this simplifies diagnostic criteria, a spectrum of severities and 

mechanisms of immune dysfunction exists within sepsis19, and it is recognised that Sepsis-3 
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guidelines might fail to identify individuals with lower severity18. SRSq transcends diagnostic 

conventions and provides a quantitative metric of immune dysfunction, potentially supporting 

clinical decision making. Finally, SRSq describes molecular profiles better than endotypes, 

resulting in twice as many differentially expressed genes. Among the pathways relevant to 

SRSq is downregulation of antigen presentation, in agreement with immunosuppression being 

a hallmark of sepsis.4 This has also been observed in trauma, where suppressing antigen 

presentation might prevent responses to self-antigens after injury.31,32 Upregulation of TLR 

signalling was also associated with SRSq across all sources of infection. This agrees with life-

threatening COVID-19 being associated with detrimental mutations in TLR and IFN genes33,34 

and highlights the importance of this pathway in severe infection. 

 

Nonetheless, it is worth highlighting some limitations. Firstly, SepstratifieR relies on bulk gene 

expression. Thus, it cannot establish which of the cellular alterations observed (e.g. decreased 

lymphocyte and increased neutrophil counts) cause immune dysfunction. We previously 

proposed T cell exhaustion as a key SRS1 feature.7 However, elevation of neutrophil 

extracellular traps in critical illness and detection of neutrophil signatures in severe COVID-19 

suggest that neutrophils might also be dysregulated.27,35,36 Combining SRSq with single-cell 

technologies could help answer this question. Secondly, SRSq does not capture the full 

heterogeneity of sepsis. For example, some previously proposed endotypes (e.g. Mars1) do 

not correlate with SRSq.9 These orthogonal axes of variation could be lost when focusing on 

SRSq only. Finally, SepstratifieR relies on aligning new data to a reference set, which requires 

information from multiple samples. Thus, Sepstratifier cannot be applied to isolated samples, 

which currently limits its application in acute clinical settings. Further methodological 

developments are needed to extend this approach to individual samples while retaining its 

cross-technological scope.  

  

In conclusion, SepstratifieR enables patient stratification in acute infection and models patients 

as a continuum. In combination with clinical biomarkers, SepstratifieR can enable precise risk 

estimation and inform the design and analysis of clinical trials, thus bringing us closer to 

precision approaches to treatment. 
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Methods 

Participants 

The UK Genomics Advances in Sepsis (GAinS) cohort 

Adult patients (≥18 yo) admitted into intensive care with sepsis due to community-acquired 

pneumonia (CAP, n=688) or faecal peritonitis (FP, n=358) were recruited through the UK 

Genomic Advances in Sepsis (GAinS) study (NCT00121196; https://ukccggains.com/) from 

34 UK intensive care units (ICUs) between 16/11/2005 and 30/05/2018. Diagnoses were 

based on ACCP/SCCM guidelines.37 Inclusion and exclusion criteria are as described by 

Davenport et al.7,8 

Ethics approval was granted nationally and locally, with informed consent obtained from all 

patients or their legal representative at the beginning of the study. This research was 

conducted under Research Ethics Committee approvals 05/MRE00/38, 08/H0505/78, and 

06/Q1605/55. 

Procedures 

Sample collection 
Sample collection was performed as described by Davenport et al.7,8 Briefly, whole blood (~10 

mL) was obtained from patients on the first, third, and/or fifth day following ICU admission. 

Leukocyte isolation was performed at the bedside using the LeukoLOCK system (Thermo 

Scientific), with RNA extracted using the Total RNA Isolation Protocol (Ambion). 
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Gene expression profiling 

Microarray 
Microarray-based profiling was performed on 676 samples (514 patients) from the GAinS 

study (Supplementary Table 1).7,8 Briefly, Illumina HumanHT-12 v4 expression BeadChips 

were used to quantify transcriptome-wide gene expression, with samples split into four 

batches.  

 

Raw data were processed using GenomeStudio. Background subtraction, quality control, 

transformation, and normalisation were performed using the vsn package.38 This included 

identification of outliers and resolution of sample swaps based on genotyping data.39 Probes 

were filtered (detection p value < 0.05 in over 5% of samples) and measurements were 

averaged across all probes uniquely mapping to each gene. Batch effects were corrected 

using the empirical Bayes framework ComBat.40  

RNA-sequencing 
RNA-seq was performed on 864 samples (667 patients) from the GAinS study, including 134 

samples with microarray data available (Supplementary Table 1). In brief, cDNA libraries 

were prepared using NEB Ultra II Library Prep kits (Illumina) and sequenced in a NovaSeq 

6000 (Illumina). Reads were aligned to the reference genome (GRCh38 v99) using STAR 

(v2.7.3) and quantified using featureCounts.41,42 Counts were normalised and log-transformed, 

resulting in log-counts per million (log-CPM). 

qRT-PCR 
Seven genes predictive of SRS7,8 and two control housekeeping genes43 (ACTB and TOP1) 

were profiled using qRT-PCR in 115 RNA samples (107 patients) from the GAinS study 

(Supplementary Table 1).  

Primers were designed using NCBI’s Primer-BLAST, ensuring that primers were exon-exon 

spanning, and amplicons were 70-250 bp and within 500 bp of a corresponding Illumina 

microarray probe. A Basic Local Alignment Search Tool (BLAST) search was performed 

against Ensembl GRCh37 v97 to ensure absence of homology to other genomic regions (E-

value <0.01).  

qRT-PCR was conducted on patient samples, two non-targeting controls (NTCs), and a 

healthy volunteer positive control, with cDNA generated from 500 ng of RNA using the 

LunaScript RT SuperMix Kit (New England Biolabs). Amplification was performed on 2 μL of 

cDNA in PCR reaction mix (2.5 µL of 10X PCR buffer, 0.75 µL of 50 mM MgCl2, 0.5 µL of 10 

mM dNTP mix, 0.5 µL of 10 µM forward and reverse primers, 0.1 µL of PlatinumTM Taq DNA 
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Polymerase, and nuclease-free water) using the following cycle: 1) 94°C for 2 min; 2) 40 cycles 

of 94°C for 30s, 55°C for 30s, and 72°C for 45s; and 3) 72°C for 5 min. 

Raw data were processed with CFX ManagerTM (BioRad) and Cq values <35 were removed. 

Mean Cq values for each gene were calculated by averaging over technical replicates, and 

normalisation to housekeeping genes was performed by subtracting the geometric mean of 

housekeeping genes from each gene in the SRS signature. Normalised Cq values were used 

for batch correction with limma (v3.44.1).44 

Public data collection 

Publicly available gene expression data were collected from three cohorts of healthy 

volunteers of German, Dutch and Finnish ancestry, as well as six infectious disease cohorts 

comprising all-cause sepsis, influenza and COVID-19 patients of different geographical origins 

(Supplementary Table 1).9,24,25,27,45–50 For microarray studies, probes were quality filtered 

(detection p value < 0.01 in over 20% of samples), and measurements were averaged across 

all probes uniquely mapping to each gene. For RNA-seq studies, counts were normalised and 

log-transformed and genes were quality filtered (>1 CPM in over 10% of samples). 

Statistical analyses 

Cross-technology data integration 

Canonical correlation analysis (CCA) was performed using the sparse CCA algorithm in the 

PMA package (v1.2.1).51 Following CCA, datasets in the GAinS study were integrated with 

healthy volunteer data from three cohorts (Supplementary Table 1) based on a set of seven 

or 19 genes. Technical differences between cohorts were corrected using mutual nearest 

neighbours (mNN) with the batchelor package (v1.4.0).16 Batches were defined based on 

technology (i.e. Illumina HumanHT-12 arrays, RNA-seq, or qPCR). 

Construction of models for patient stratification 

Definition of a quantitative sepsis response score 

Diffusion maps were constructed using the destiny package.52 The first diffusion component 

(DC1) was used to derive a quantitative sepsis response score (SRSq), defined as the min-

max scaled DC1 coordinate of each sample: 
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Where SRSqi and DC1i represent the sepsis response score and DC1 coordinates for the i-th 

sample, respectively. Min-max scaling restricted SRSq to the [0,1] range, where values closer 

to one indicate more severe immune dysfunction. 

Random forest training and evaluation 

Random forests were trained using Breiman’s algorithm with the randomForest (v4.6.14) and 

caret (v6.0.86) packages.5354,55 Five hundred decision trees were built per forest, using either 

7 or 19 genes as predictor variables. Either SRS labels or SRSq scores were used as 

response variables. Performance was evaluated using leave-one-out cross-validation 

(LOOCV) by estimating Cohen’s Kappa (for SRS) or root-mean-square errors (RMSE; for 

SRSq).56 The optimal number of predictor variables sampled at each split (i.e. ‘mtry’) was 

defined by assessing model performance over a range of values.  

Gene expression data analysis 

Differential expression analysis 

Differential gene expression between SRS endotypes and along SRSq was assessed using 

moderated T-tests with limma.44 Genes were called differential expressed whenever: 1) |fold-

change| > 1.5 between SRS groups at a false discovery rate (FDR) of 0.05; or 2) |fold-change| 

> 3.5 per unit increase in SRSq at an FDR of 0.05 (i.e. a one-fold increase in expression for 

every 0.3 SRSq units). 

Pathway enrichment analysis 

Pathway enrichment was assessed using XGR (v1.1.8)57 using pathways listed in 

REACTOME.58 Pathways were deemed significantly enriched if they passed the 0.05 FDR 

threshold. 

Clinical data analysis 

Pre-processing and integration with SRS/SRSq 

GAinS clinical information was collected by local investigators using electronic case report 

forms (Supplementary Table 2). Data were quality filtered and assembled into a database 

for ease of access. 

Associations between SRS and clinical variables were tested using Kruskal-Wallis one-way 

analysis of variance (for numeric variables) or Mood’s median test (for ordinal variables) with 

the RVAideMemoire package (v0.9.80).59 Associations between SRSq and clinical variables 
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were assessed using correlation tests (for numeric variables) or proportional odds logistic 

regression (for ordinal variables) with the MASS package.60,61 

Survival analysis 

Mortality and time to death were censored (i.e. capped) at 28 days post ICU-admission. 

Kaplain-Meier curves were built using the survival (v3.1.12) package, modelling time to event 

as a function of SRS (with SRS measured at the latest time point available per patient). 

Visualisation was performed using survminer (v0.4.9)62, with significance estimated by log-

rank tests.  

To test for associations between SRSq and survival, samples were sorted by increasing SRSq 

(at the latest time point available) and a sliding window containing 35% of samples was used 

to estimate 28-day survival. Windows were slid one sample at a time using the zoo (v1.8.7) 

package63 until reaching the sample with highest SRSq. Survival within each window was 

estimated using survival. Associations were subsequently tested using Cox Proportional 

Hazard models.64 Hazard ratios (relative to 0.1-unit increases in SRSq) were modelled as an 

exponential function of SRSq, adjusting for age and source of sepsis (CAP or FP). Significance 

was assessed by log-rank tests. 

Mediation analysis 

Mediation analysis is best conceptualised using causal diagrams. In the diagram below, X 

represents an independent variable and Y a dependent variable, with M being a mediator lying 

in the causal path between X and Y. Arrows indicate the direction of causality: 

 

Mediation analysis estimates how much of the effect of X on Y depends on changes in M (the 

average causal mediation effect, ACME), as well as how much is independent of M (the direct 

causal effect, ADE).21,65 To do so, Y is modelled as a function of M and X, M itself being a 

function of X. ACME and ADE are then estimated either exactly or with simulations.22,66 

In this study, SOFA scores, organ function measurements, and the presence/absence of 

shock were considered potential mediators of SRSq on mortality. Thus, each of them was 

modelled as a function of SRSq while accounting for covariates (age and source of sepsis). 

More specifically, numeric variables (e.g. SOFA scores) were modelled using a standard linear 

regression: 
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Where M is the mediator variable, Ci the i-th covariate, and 𝛼 and 𝜀 the regression coefficients 

and random error term, respectively.  

In contrast, binary variables (e.g. shock) were modelled using logistic regression with a probit 

model: 

 

Where p(M) is the probability of the mediator, Ci the i-th covariate, 𝛼 and 𝜀 the regression 

coefficients and random error term, respectively, and 𝜱 the cumulative distribution function 

(CDF) of the normal distribution: 

 

Assuming X is normally distributed with zero mean and unit standard deviation: 

 

The dependent variable (i.e. mortality) was then modelled as a function of each mediator, one 

variable at a time, while accounting for SRSq and covariates. This was done using a logistic 

regression with probit model: 

 

Where p(D) is the probability of death within 28 days of ICU admission, M the mediator of 

interest, Ci the i-th covariate, 𝛼 and 𝜀 the regression coefficients and random error term, 

respectively, and 𝜱 the cumulative distribution function (CDF) of the normal distribution. 

ACMEs, ADEs, and their 95% confidence intervals were estimated using Monte Carlo 

simulations, as implemented in the mediation package (v4.5.0).22,23,67 Effect sizes were 

estimated relative to 0.1-unit increases in SRSq. 

Mediation effects are best interpreted in terms of counterfactuals.21 In particular, ADEs tell us 

how much mortality would increase if SRSq were increased by 0.1 units while keeping the 
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mediator constant. In contrast, ACMEs tell us how much mortality would increase if SRSq 

were held constant, but the mediator was artificially increased as if SRSq had increased by 

0.1 units. 

Code and data availability 
All codes will be made publicly available upon publication. The SepstratifieR package can be 

downloaded and installed from https://github.com/jknightlab/SepstratifieR.  

Gene expression data for GAinS study samples are publicly available in ArrayExpress (E-

MTAB-4421, E-MTAB-4451, E-MTAB-5273, and E-MTAB-5274). Accession numbers for all 

public datasets used are listed in Supplementary Table 1. 
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Supplementary figures 

 
Supplementary Figure 1. Two gene signatures for stratification of sepsis patients. A) Box plots 
showing the expression level (Y axis) of genes (X axis) in the Davenport and Extended signatures, as 
measured using microarrays (top panel) and RNA-seq (bottom panel). Each box plot summarises 
measurements from a group of patients, where patients are stratified by sepsis endotype (red = SRS1, 
light blue = SRS2, dark blue = SRS3). Box plots are defined in terms of medians (central line), IQR (box 
limits) and whiskers extending by ±1.5 the IQR. B) UpSet plot showing the agreement between 
endotype classifications obtained using the Davenport and Extended signature in microarray (left) and 
RNA-seq (right) samples of the GAinS study. Bar heights indicate the number of samples in each set, 
with dots and lines showing specific overlaps. Bar colours represent sepsis endotype groups (horizontal 
bars) and whether labels agree between both signatures (vertical bars). 
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Supplementary Figure 2. Features of sepsis response groups in the GAinS study. A) A subset of 
immune-relevant pathways significantly enriched for genes differentially expressed between SRS1 and 
SRS2 patients profiled using microarray (top panel) or RNA-seq (bottom panel). Each plot shows either 
pathways upregulated in the SRS1 (left) or SRS2 (right) endotype. Dots show the estimated log2-fold 
enrichment, with whiskers indicating the associated 95% confidence interval. All pathways were 
significant at FDR 0.05. B) Box plots showing difference in APACHE II scores between SRS endotypes 
in microarray (left) and RNA-seq (right) GAinS samples. Each dot represents a sample, colour coded 
by sepsis endotype. Box plots were defined in terms of medians (central line), IQR (box limits) and ±1.5 
IQRs; p = p values from a T test (left) and a Kruskal-Wallis test (right). 
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Supplementary Figure 3. Clinical characteristics associated with SRSq in the GAinS study. A) 
Diffusion map plot showing the first two diffusion components based on the Davenport reference map. 
Each dot represents a sample, with colours encoding endotype groups and shapes indicating the 
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profiling platform used.  B) Correlation between SRSq values estimated using the Davenport (X axis) 
and Extended (Y axis) gene signatures. Each dot represents a sample. Cor = Pearson correlation 
coefficient. C) Correlation between SRSq scores as originally defined using diffusion maps (X axis) and 
SRSq scores as predicted with a random forest model (Y axis) based on the Extended gene signature. 
Each dot represents a sample, colour coded by sepsis endotype. R = Pearson correlation coefficient; 
RMSE = Root Mean Square Error; p = Correlation p value estimated using a two-tailed T test. D) Top 
genes positively (top panels) and negatively (bottom panels) associated with SRSq. Each plot 
represents the expression level for the gene in question as measured using RNA-seq (log-CPM; Y axis) 
for different SRSq values (X axis). Each dot represents a sample, colour coded by sepsis endotype. E) 
Association between SRSq (X axis) and log-transformed cell counts (Y axis)in GAinS microarray (top) 
and RNA-seq (bottom) samples. Each dot represents a sample, coloured by sepsis endotype. Lines 
indicate the best linear fit, with shaded areas showing their associated 95% confidence intervals. R = 
Pearson correlation coefficient; p = correlation p value estimated using a two-tailed T test. F) Effect size 
estimates obtained from applying mediation analysis to microarray (left) and RNA-seq (right) samples 
in GAinS, using SOFA score as a mediator variable. Dots represent estimated effect sizes, with lines 
showing the associated 95% confidence interval. Solid and dotted lines represent effect sizes estimated 
with respect to samples with high SRSq (treatment condition) and low SRSq (control condition), 
respectively. ACME = Average Causal Mediation Effect; ADE = Average Direct Effect; p = mediation p 
value associated with ACME estimation. G) Schematic diagram representing the causal model inferred 
from mediation analysis. Arrows represent causal relationships, with arrow directions indicative of the 
direction of causality. Effect estimates from mediation analysis are provided for each arrow, along with 
their 95% confidence intervals and significance levels. H) Correlation between SRSq (X axis) and 
clinical variables (Y axis) in GAinS microarray (top panels) and RNA-seq (bottom panel) samples. Rows 
show different clinical variables. Each dot represents a sample, colour coded by sepsis endotype. Lines 
indicate the best linear fit, with shaded areas showing the associated 95% confidence intervals. R = 
Pearson correlation coefficient; p = correlation p value estimated using a two-tailed T test.  
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Supplementary Figure 4. Validation of the utility of SRSq predictions in an independent cohort 
of sepsis patients. A) PCA plot based on whole blood transcriptomes. Each dot represents a sample, 
colour coded by its clinical group. Marginal distributions are provided. B) UpSet plot (bottom) and 
heatmap (top) showing the agreement between endotype labels and clinical groups. Bar heights in the 
UpSet plot indicate the number of samples assigned to each category, with dots and lines showing 
different types of overlap. Horizontal bar colours indicate endotype classes (top) and clinical groups 
(bottom). The colour scale in the heatmap shows the overlap between different endotypes and clinical 
groups as estimated using Jaccard indexes. C) Box plots showing the association between SRSq (X 
axis) and clinical group (Y axis). Each dot represents a sample. Box plots were defined in terms of 
median and IQR, with whiskers extending by ±1.5 the IQR; p = p value from a Kruskal-Wallis test. D) 
Volcano plot showing genes differentially expressed along SRSq. Each dot is a gene, with red indicating 
a positive and blue a negative association with SRSq. Grey dots represent genes which do not reach 
statistical significance. Gene names are provided for a subset of significant genes with immune 
relevance. E) Top genes identified as positively (top panels) and negatively (bottom panels) associated 
with SRSq in GAinS. Each plot represents the expression level for the gene in question in the study by 
Parnell et al. (Y axis) for different SRSq values (X axis). Each dot is a sample, colour coded by sepsis 
endotype.  F) Scatter plot showing the correlation between SRSq-associated log-fold changes in the 
GAinS study (X axis) and in the study by Parnell et al. (Y axis); Cor = Pearson correlation coefficient; p 
= correlation p value estimated using a two-tailed T test.  G) A subset of immune-relevant pathways 
significantly enriched for genes differentially expressed along SRSq. Plots show either pathways 
positively (left) or negatively (right) associated with SRSq. Dots show the estimated log2-fold 
enrichment, with whiskers indicating the associated 95% confidence interval. All pathways were 
significant at FDR 0.05. H) Correlation between SRSq and time of sampling, shown either as box plots 
(top panel) or line plots (bottom panel). In the box plots, each dot represents a sample colour coded by 
sepsis endotype. Box plots show average measurements for all samples corresponding to the same 
sampling time-point and are defined in terms of medians (central line), IQRs (box limits) and ±1.5 the 
IQR. Solid lines represent the best linear fit obtained when treating sampling time point as a numeric 
variable; R = Pearson correlation coefficient, p = correlation p values obtained using a two-tailed T test. 
In the line plots, each dot represents a sample colour coded by sepsis endotype, with lines connecting 
samples which correspond to the same patient repeatedly sampled over time. Lines are coloured based 
on the sepsis endotype assigned to each patient at the earliest time point available. I) Association 
between SRSq (X axis) and clinical variables (Y axis). Each dot represents a sample, coloured by sepsis 
endotype. Lines indicate the best linear fit, with shaded areas showing their associated 95% confidence 
intervals. R = Pearson correlation coefficient; p = correlation p value estimated using a two-tailed T test.  
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Supplementary Figure 5. Prediction of SRSq scores in sepsis patients from the MARS study. A) 
PCA plots based on whole blood transcriptomes. Each dot represents a sample, colour coded by: Mars 
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endotype (top panel), SRS endotype (mid panel), and SRSq (bottom panel). Marginal distributions are 
provided where appropriate.  B) UpSet plot (bottom) and heatmap (top) showing the overlap between 
SRS and Mars endotype labels. Bar heights in the UpSet plot indicate the number of samples assigned 
to each category, with dots and lines showing different types of overlap. Horizontal bar colours indicate 
Mars (top) and SRS (bottom) endotype classifications, with dots and lines indicating specific overlaps. 
The colour scale in the heatmap shows the overlap between the two endotype definitions as estimated 
using Jaccard indexes.  C) Volcano plot (bottom) showing genes differentially expressed between SRS1 
and SRS2 samples. Each dot is a gene, with red indicating upregulation and blue downregulation in 
SRS1 samples. Grey dots show genes which do not reach statistical significance. Gene names are 
provided for a subset of significant genes with immune relevance. The associated scatter plot (top) 
shows the agreement between log-fold changes in the GAinS (X axis) and MARS (Y axis) studies. Cor 
= Pearson correlation coefficient; p = correlation p value estimated using a two-tailed T test. D) Top 
genes identified as positively (top panels) and negatively (bottom panels) associated with SRSq in 
GAinS. Each plot represents the expression level for the gene in question in the MARS cohort (Y axis) 
for different SRSq values (X axis). Each dot is a sample, colour coded by SRS endotype. E) A subset 
of immune-relevant pathways significantly enriched for genes differentially expressed between SRS1 
and SRS2. Plots show either pathways upregulated (left) or downregulated (right) in SRS1 samples. 
Dots show the estimated log2-fold enrichment, with whiskers indicating the associated 95% confidence 
interval. All pathways were significant at FDR 0.05. F) Proportion of MARS patients diagnosed with 
septic shock in each SRS group. Bar heights indicate patient proportions per group, with colours 
corresponding to the presence or absence of shock; p = p value from Fisher’s exact test. G) Box plot 
showing the distribution of SOFA scores within each SRS group (top panel), and scatter plot showing 
the correlation between SOFA and SRSq scores (bottom panel). Each dot represents a sample, colour 
coded by SRS endotype. Box plots were defined in terms of medians (central line) and IQRs (box limits), 
with p values estimated using a Kruskal-Wallis test. The solid line in the scatter plot shows the best 
linear fit, with R = Pearson correlation coefficient and p = correlation p value obtained using a two-tailed 
T test. The associated plots show the distribution of organ-specific SOFA scores for each SRS group. 
Red lines indicate median values, with p values calculated using Mood’s median test. H) Kaplan-Meier 
curves comparing the 28-day survival of patients in the SRS1 and SRS2 groups. Each line represents 
average survival probabilities (Y axis) over time (X axis), with shaded areas indicating 95% confidence 
intervals. All patient numbers are shown at the bottom; p = p value from log-rank tests. I) Causal model 
used for mediation analysis. Arrows represent hypothesised relationships, with arrowheads indicative 
of the direction of causality. J) Effect size estimates obtained from mediation analysis, using either 
septic shock (left) or SOFA score (right) as the mediator variable. Dots represent estimated effect sizes, 
with lines showing the associated 95% confidence interval. Solid and dotted lines represent effect sizes 
estimated with respect to samples with high SRSq (treatment condition) and low SRSq (control 
condition), respectively. ACME = Average Causal Mediation Effect; ADE = Average Direct Effect; p = 
mediation p value associated with ACME estimation. 
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Supplementary Figure 6. SRSq score prediction in COVID-19 patients from the DeCOI study. A) 
PCA plot based on whole blood transcriptomes. Each dot represents a sample, colour coded by its 
clinical group. Marginal distributions are provided. B) UpSet plot (bottom) and heatmap (top) showing 
the agreement between endotype labels and clinical groups. Bar heights in the UpSet plot indicate the 
number of samples assigned to each category, with dots and lines showing different types of overlap. 
Horizontal bar colours indicate endotype classes (top) and clinical groups (bottom). The colour scale in 
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the heatmap shows the overlap between endotypes and clinical groups as estimated using Jaccard 
indexes. C) Box plots showing the association between SRSq (X axis) and clinical group (Y axis). Each 
dot represents a sample, colour coded by sepsis endotype (red = SRS1, light blue = SRS2, dark blue 
= SRS3). Box plots were defined in terms of median and IQR, with whiskers extending by ±1.5 the IQR; 
p = p value from a Kruskal-Wallis test. D) Top genes identified as positively (top panels) and negatively 
(bottom panels) associated with SRSq in GAinS. Each plot represents the expression level for the gene 
in question in the DeCOI study (Y axis) for different SRSq values (X axis). Each dot is a sample, colour 
coded by sepsis endotype.  E) Volcano plot showing genes differentially expressed along SRSq. Each 
dot is a gene, with red indicating a positive and blue a negative association with SRSq. Grey dots 
represent genes which do not reach statistical significance. Gene names are provided for a subset of 
significant genes with immune relevance. The associated scatter plot (right) shows the agreement 
between log-fold changes in the GAinS (X axis) and DeCOI (Y axis) studies. Cor = Pearson correlation 
coefficient; p = correlation p value estimated using a two-tailed T test. F) A subset of immune-relevant 
pathways significantly enriched for genes differentially expressed along SRSq. Plots show either 
pathways positively (left) or negatively (right) associated with SRSq. Dots show the estimated log2-fold 
enrichment, with whiskers indicating the associated 95% confidence interval. All pathways were 
significant at FDR 0.05. G) Association between SRSq (X axis) and cell counts (Z-scored; Y axis). Each 
dot represents a sample, coloured by sepsis endotype. Lines indicate the best linear fit, with shaded 
areas showing their associated 95% confidence intervals. Cor = Pearson correlation coefficient; p = 
correlation p value estimated using a two-tailed T test. H) Association between SRSq (X axis) and 
clinical variables (Y axis). Each dot represents a sample, coloured by sepsis endotype. Lines indicate 
the best linear fit, with shaded areas showing their associated 95% confidence intervals, with Cor = 
Pearson correlation coefficient and p = correlation p value estimated using a two-tailed T test. Box plots 
were defined in terms of median and IQR, with whiskers extending by ±1.5 the IQR and p = p value 
from a T test. 
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Supplementary Figure 7. Transcriptional profiles associated with SRSq in COVID-19 patients 
from the COMBAT study. A) Volcano plot showing genes differentially expressed along SRSq. Each 
dot is a gene, with red indicating a positive and blue a negative association with SRSq. Grey dots 
represent genes which do not reach statistical significance. Gene names are provided for a subset of 
significant genes with immune relevance. The associated scatter plot (right) shows the agreement 
between log-fold changes in the GAinS (X axis) and COMBAT (Y axis) studies. Cor = Pearson 
correlation coefficient; p = correlation p value estimated using a two-tailed T test. B) Top genes identified 
as positively (top panels) and negatively (bottom panels) associated with SRSq in GAinS. Each plot 
represents the expression level of the gene in question in the COMBAT study (Y axis) for different SRSq 
values (X axis). Each dot is a sample, colour coded by sepsis endotype. C) A subset of immune-relevant 
pathways significantly enriched for genes differentially between sepsis endotypes. Plots show either 
pathways upregulated (left) or downregulated (right) in SRS1 samples. Dots show the estimated log2-
fold enrichment, with whiskers indicating the associated 95% confidence interval. All pathways were 
significant at FDR 0.05.  
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Supplementary tables 

Supplementary Table 1. Publicly available data sets used for model training and validation. List 
of all publicly available gene expression data sets used throughout this study, either for model training 
or for validation of results. All data sets consisted of whole blood transcriptomes. 
 

Study Data 
repository 

Clinical 
phenotype 

Sample size Profiling 
strategy 

Usage 

Genomic 
Advances in 
Sepsis (GAinS) 

ArrayExpress: 
E-MTAB-4421, 
E-MTAB-4451,  
E-MTAB-5273, 
E-MTAB-5274 

Sepsis 
secondary to 
CAP or FP 

676 samples  
(514 patients; 
383 CAP and 
131 FP) 

LeukoLOCK + 
Illumina 
HumanHT-12 
v4 arrays 

Model 
training and 
testing 

GAinS Data will be 
made available 
in EGA before 
publication 

Sepsis 
secondary to 
CAP or FP 

864 samples 
(667 patients; 
439 CAP and 
228 FP) 

LeukoLOCK + 
polyA RNA-
seq 

Model 
training and 
testing 

GAinS Data will be 
provided as a 
supplementary 
table upon 
publication 

Sepsis 
secondary to 
CAP 

115 samples 
(107 CAP 
patients) 

LeukoLOCK + 
qRT-PCR 

Model 
training and 
testing 

Dietary, Lifestyle, 
and Genetic 
determinants of 
Obesity and 
Metabolic 
syndrome 
(DILGOM) 

ArrayExpress: 
E-TABM-1036 

Healthy 
volunteers 

518 samples PAXgene 
tubes + 
Illumina 
HumanHT-12 
v3 arrays 

Model 
training and 
testing 

Study of Health in 
Pomerania 
(SHIP-TREND) 

GEO: 
GSE36382 

Healthy 
volunteers 

991 samples PAXgene 
tubes + 
Illumina 
HumanHT-12 
v3 arrays 

Model 
training and 
testing 

400FG (Human 
Functional 
Genomics 
Project; HFGP) 

GEO: 
GSE134080 

Healthy 
volunteers 

100 samples PAXgene 
tubes + polyA 
RNA-seq  

Model 
training and 
testing 

Parnell et al. GEO: 
GSE54514 

Bacterial 
sepsis 

163 samples 
(36 patients, 18 
controls) 

PAXgene 
tubes + 
Illumina 
HumanHT-12 
v3 arrays 

Validation 

Molecular 
Diagnosis and 
Risk of Sepsis 
(MARS) 

GEO: 
GSE65682 

All-cause 
Sepsis 

802 samples PAXgene 
tubes + HG 
U219 
Affymetrix 
arrays 

Validation 

Mechanisms of 
Severe Acute 

GEO: 
GSE111368 

H1N1 
influenza 

358 samples 
(109 patients, 

Tempus tubes 
+ Illumina 

Validation 
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Influenza 
Consortium 
(MOSAIC) 

130 controls) HumanHT-12 
v4 arrays 

Deutsche 
COVID-19 Omics 
Initiative (DeCOI) 

GitHub:  
 
https://github.c
om/schultzelab/
COVID-19-
blood-bulk-
RNA-Seq 

COVID-19 49 samples 
 
(39 patients and 
10 controls) 

PAXgene 
tubes + polyA 
RNA-seq 

Validation 

COVID-19 Multi-
Omic Blood Atlas 
(COMBAT) 

Zenodo: 
 
https://doi.org/1
0.5281/zenodo.
6120249 

COVID-19 101 samples 
 
(77 COVID-19 
patients and 10 
controls) 

Tempus tubes 
+ total RNA-
seq 

Validation 
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Supplementary Table 2. Clinical variables in the GAinS study. List of clinical and outcome variables 
available for the GAinS cohort and used throughout this study. Different columns specify how these 
variables were measured and in which units. 
 

Clinical 
variable 

Definition Variable 
type 

Unit 

Mortality event Information on whether the patient died (1) or 
survived (0)  

Binary Yes/No 

Time to mortality 
event 

Number of days from ICU admission to death 
(if it occurred) 

Numeric 
(integer) 

Days 

Cell counts Full blood counts as measured in hospital 
using haematology analysers 

Numeric 
(float) 

1x109 cells/l 

APACHE scores Total Acute Physiology and Chronic Health 
Evaluation (APACHE) II scores measured at 
ICU admission 

Numeric 
(integer) 

0-24 points 

Total SOFA 
scores 

Total Sequential Organ Failure Assessment 
(SOFA) scores measured during the first, third 
and/or fifth days after ICU admission  

Numeric 
(integer) 

0-71 points 

Mean arterial 
pressure (MAP) 

Lowest mean arterial pressure measurement 
obtained for each patient 

Numeric 
(float) 

mmHg 

PF ratio PaO2/FiO2 ratio (i.e. Horowitz index) Numeric 
(float) 

mmHg 

Bilirubin levels Highest bilirubin measurement obtained for 
each patient 

Numeric 
(float) 

𝝻mol/l 

Creatinine levels Highest creatinine measurement obtained for 
each patient 

Numeric 
(float) 

𝝻mol/l 

Platelet levels Number of platelets measured Numeric 
(float) 

1x103 platelets/𝝻l 

ICU-AI scores ICU-acquired infection score. 
 
This score reflects how many of the following 
ICU-acquired complications were diagnosed 
for each patient: 1) ventilator associated 
pneumonia (VAP), 2) lower respiratory tract 
infection, 3) bacteraemia, 4) line-related 
infection, 5) wound infection, 6) urinary tract 
infection (UTI), 7) other infection 

Ordinal 
(integer) 

0-7 points 
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