326 research outputs found

    A soil-landscape model for southern Mahurangi Forest, Northland

    Get PDF
    Exotic plantation forestry has a productive area of about 75 000 ha in Northland (L. Cannon, personal communication). Forestry is thus an important land use of both economic and environmental significance in Northland as well as elsewhere in New Zealand. Therefore, it is of considerable importance that forestlands be managed sustainably by employing approaches such as site-specific management. The establishment of site-specific forest management practices requires information regarding the distribution of key soil properties (Turvey and Poutsma, 1980). Quantitative modelling to predict key soil properties of sustainable forestry from observable landscape features may be a cost-effective approach to mapping forestlands. We are investigating the efficacy of such an approach within Mahurangi Forest, Northland

    A soil-landscape model for Mahurangi Forest, Northland, New Zealand

    Get PDF
    Exotic plantation forestry is an important land use of both economic and environmental significance in Northland and elsewhere in New Zealand. It is therefore of considerable importance that forestlands be managed sustainably by employing approaches such as site-specific management. The establishment of site-specific forest management practices requires information regarding the distribution of key soil properties (Turvey and Poutsma, 1980). Quantitative modelling to predict key soil properties from landscape features may be an effective approach to mapping forestlands. A study investigating the efficacy of such an approach is being conducted within Mahurangi Forest, Northland, New Zealand. As a pilot to the study, a detailed qualitative soil-landscape model was developed in order to gain a greater understanding of the soil-landscape relationships and soil pattern of the area. The qualitative soil-landscape model developed in the pilot study is presented here

    Sound production mechanism in the semiterrestrial crab Neohelice granulata (Brachyura, Varunidae)

    Get PDF
    Very few studies of sound production in the Brachyura have simultaneously identified the type of individuals (e.g. sex) producing acoustic signals, the structures involved in making sound and the social context. The emission and type of sound signals in Neohelice granulata were previously characterized, but the sex and the body structures involved in the sound production mechanism were not determined. In the present study, experiments conducted in the laboratory demonstrated that acoustic signals were produced by males through an up-down movement of the cheliped by rubbing the merus against the pterygostomial area of the carapace. The micromorphology of the merus showed that it has a ridge of tubercles which may act as a plectrum, while the pterygostomial area bears tubercles and might function as the pars stridens. Acoustic signals were displayed more frequently in the presence of receptive females. Agonistic encounters among males also occurred more often in the presence of receptive females. We propose that Neohelice granulata males use their chelipeds to produce sound signals in a mating context, probably to attract the receptive female and/or to repel other males when a receptive female is present. Thus, the display might have a reproductive function influencing mate choice.Fil: Sal Moyano, María Paz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Ceraulo, Maria. Consiglio Nazionale delle Ricerche; ItaliaFil: Mazzola, Salvatore. Consiglio Nazionale delle Ricerche; ItaliaFil: Buscaino, Giuseppa. Consiglio Nazionale delle Ricerche; ItaliaFil: Gavio, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Wellsprings of a 'World War': An early English attempt to conquer Canada during King William's war, 1688-97

    Get PDF
    This is the author's PDF version of an article published in Journal of Imperial and Commonwealth History© 2006. The definitive version is available at www.tandf.co.uk/journals/FICHThis article discusses the military history of the early years of King William's War, 1688-97, including an early attempt to conquer French Canada in 1690 by Sir William Phips. The article places this within differeing interpretations of the military historiography of early modern colonial America.This article was submitted to the RAE2008 for the University of Chester - History

    The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Get PDF
    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services
    corecore