13,188 research outputs found
Nucleosynthesis in the Outflow from Gamma Ray Burst Accretion Disks
We examine the nucleosynthesis products that are produced in the outflow from
rapidly accreting disks. We find that the type of element synthesis varies
dramatically with the degree of neutrino trapping in the disk and therefore the
accretion rate of the disk. Disks with relatively high accretion rates such as
10 M_solar/s can produce very neutron rich nuclei that are found in the r
process. Disks with more moderate accretion rates can produce copious amounts
of Nickel as well as the light elements such as Lithium and Boron. Disks with
lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as
well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide
array of potential nucleosynthesis products is due to the varying influence of
electron neutrinos and antineutrinos emitted from the disk on the
neutron-to-proton ratio in the outflow. We use a parameterization for the
outflow and discuss our results in terms of entropy and outflow acceleration.Comment: 12 pages, 12 figures; submitted to Ap
A bright millisecond radio burst of extragalactic origin
Pulsar surveys offer one of the few opportunities to monitor even a small
fraction (~0.00001) of the radio sky for impulsive burst-like events with
millisecond durations. In analysis of archival survey data, we have discovered
a 30-Jy dispersed burst of duration <5 ms located three degrees from the Small
Magellanic Cloud. The burst properties argue against a physical association
with our Galaxy or the Small Magellanic Cloud. Current models for the free
electron content in the Universe imply a distance to the burst of <1 Gpc No
further bursts are seen in 90-hr of additional observations, implying that it
was a singular event such as a supernova or coalescence of relativistic
objects. Hundreds of similar events could occur every day and act as insightful
cosmological probes.Comment: 18 pages, 4 figures. Accepted by Science. Published electronically
via Science Express on September 27, 200
Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments
The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations
Terminal-area flight procedures and route design for supersonic transport New York-transatlantic operations
The results of an analytical investigation of two departure and arrival transition procedures between John F. Kennedy International Airport and projected North Atlantic track systems for supersonic transport (SST) operations are presented. The procedures studied were: (1) separated departure and arrival transition routes with departures made at supersonic speeds, and (2) superimposed departure and arrival routes with departures restricted to subsonic speed until the airplane is on the track system. For both procedures, transition routes with intercept angles of 30 deg to 90 deg to both six-and four-track systems were investigated. Track spacings of 30 and 60 nautical miles were studied
Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration
We study the partition function from random matrix theory using a well known
connection to orthogonal polynomials, and a recently developed Riemann-Hilbert
approach to the computation of detailed asymptotics for these orthogonal
polynomials. We obtain the first proof of a complete large N expansion for the
partition function, for a general class of probability measures on matrices,
originally conjectured by Bessis, Itzykson, and Zuber. We prove that the
coefficients in the asymptotic expansion are analytic functions of parameters
in the original probability measure, and that they are generating functions for
the enumeration of labelled maps according to genus and valence. Central to the
analysis is a large N expansion for the mean density of eigenvalues, uniformly
valid on the entire real axis.Comment: 44 pages, 4 figures. To appear, International Mathematics Research
Notice
Timing of pulsars found in a deep Parkes multibeam survey
We have carried out a sensitive radio pulsar survey along the northern
Galactic plane ( and |b| \lapp 2^{\circ}) using
the Parkes 20-cm multibeam system. We observed each position for 70-min on two
separate epochs. Our analyses to date have so far resulted in the detection of
32 pulsars, of which 17 were previously unknown. Here we summarize the
observations and analysis and present the timing observations of 11 pulsars and
discovery parameters for a further 6 pulsars. We also present a timing solution
for the 166-ms bursting pulsar, PSR~J1938+2213, previously discovered during an
Arecibo drift-scan survey. Our survey data for this pulsar show that the
emission can be described by a steady pulse component with bursting emission,
which lasts for typically 20--25 pulse periods, superposed. Other new
discoveries are the young 80.1-ms pulsar PSR~J1935+2025 which exhibits a
significant amount of unmodeled low-frequency noise in its timing residuals,
and the 4.2-ms pulsar PSR~J1935+1726 which is in a low-mass binary system with
a 90.7-day circular orbit.Comment: 6 pages, 2 figures, accepted for publication in MNRA
- …