79 research outputs found

    Exile Vol. XXV No. 1

    Get PDF
    PROSE Friend by John Marshall Visiting Relatives by Cynthia Lanning Hahn The Mud Lane by Eloise Haveman The Petrification of a Wild Sweet William Blossom by Melissa Simmons ART Three views of Granville by Scott Tryon (front cover) untitled photos by Bogart and Jerry Brown Landscape by Scott Tryon Submissive Defiance by Bogart Three things that Remain by Jerry Brown back cover by Lindy Davies POETRY A Photographer Documents Her Death by Chris Gjessing three Haiku by Eloise Haveman Morning by Melissa Simmons Granite Travel by Lisa Minacci did you year? by Bob McLaughlin he\u27s coming home again by Bob McLaughlin David by Betsy Bates Le Cafe de \u27lUnivers by Ann Leopard untitled by John Marshall The Last Ramona Poem (fat chance) by Lindy Davies Mother Told Me not to Play Next Door by Ellen Cox Poems of the Inconsequentials by Eloise Havema

    Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression

    Get PDF
    The genetically heterogeneous triple-negative breast cancer (TNBC) continues to be an intractable disease, due to lack of effective targeted therapies. Gene amplification is a major event in tumorigenesis. Genes with amplification-dependent expression are being explored as therapeutic targets for cancer treatment. In this study, we have applied Analytical Multi-scale Identification of Recurring Events analysis and transcript quantification in the TNBC genome across 222 TNBC tumors and identified 138 candidate genes with positive correlation in copy number gain (CNG) and gene expression. siRNA-based loss-of-function screen of the candidate genes has validated EGFR, MYC, ASAP1, IRF2BP2, and CCT5 genes as drivers promoting proliferation in different TNBC cells. MYC, ASAP1, IRF2BP2, and CCT5 display frequent CNG and concurrent expression over 2173 breast cancer tumors (cBioPortal dataset). More frequently are MYC and ASAP1 amplified in TNBC tumors (>30%, n = 320). In particular, high expression of ASAP1, the ADP-ribosylation factor GTPase-activating protein, is significantly related to poor metastatic relapse-free survival of TNBC patients (n = 257, bc-GenExMiner). Furthermore, we have revealed that silencing of ASAP1 modulates numerous cytokine and apoptosis signaling components, such as IL1B, TRAF1, AIFM2, and MAP3K11 that are clinically relevant to survival outcomes of TNBC patients. ASAP1 has been reported to promote invasion and metastasis in various cancer cells. Our findings that ASAP1 is an amplification-dependent TNBC driver gene promoting TNBC cell proliferation, functioning upstream apoptosis components, and correlating to clinical outcomes of TNBC patients, support ASAP1 as a potential actionable target for TNBC treatment

    Author Correction:SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland

    Get PDF
    Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18−44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9−38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1−6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2−78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7−92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5−99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic

    SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland

    Get PDF
    Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18-44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9-38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1-6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2-78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7-92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5-99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic. [Abstract copyright: © 2022. The Author(s).

    Confirmed SARS-CoV-2 infection in Scottish neonates 2020-2022:a national, population-based cohort study

    Get PDF
    Objectives: To examine neonates in Scotland aged 0–27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. Design: Population-based cohort study. Setting and population: All live births in Scotland, 1 March 2020–31 January 2022. Results: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. Implications and relevance: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown

    An increased cell cycle gene network determines MEK and Akt inhibitor double resistance in triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor clinical prognosis and limited targeted treatment strategies. Kinase inhibitor screening of a panel of 20 TNBC cell lines uncovered three critical TNBC subgroups: 1) sensitive to only MEK inhibitors; 2) sensitive to only Akt inhibitors; 3) resistant to both MEK/Akt inhibitors. Using genomic, transcriptomic and proteomic datasets of these TNBC cell lines we unravelled molecular features associated with the MEK and Akt drug resistance. MEK inhibitor-resistant TNBC cell lines were discriminated from Akt inhibitor-resistant lines by the presence of PIK3CA/PIK3R1/PTEN mutations, high p-Akt and low p-MEK levels, yet these features could not distinguish double-resistant cells. Gene set enrichment analyses of transcriptomic and proteomic data of the MEK and Akt inhibitor response groups revealed a set of cell cycle-related genes associated with the double-resistant phenotype; these genes were overexpressed in a subset of breast cancer patients. CDK inhibitors targeting the cell cycle programme could overcome the Akt and MEK inhibitor double-resistance. In conclusion, we uncovered molecular features and alternative treatment strategies for TNBC that are double-resistant to Akt and MEK inhibitors

    A population-based matched cohort study of major congenital anomalies following COVID-19 vaccination and SARS-CoV-2 infection

    Get PDF
    Evidence on associations between COVID-19 vaccination or SARS-CoV-2 infection and the risk of congenital anomalies is limited. Here we report a national, population-based, matched cohort study using linked electronic health records from Scotland (May 2020-April 2022) to estimate the association between COVID-19 vaccination and, separately, SARS-CoV-2 infection between six weeks pre-conception and 19 weeks and six days gestation and the risk of [1] any major congenital anomaly and [2] any non-genetic major congenital anomaly. Mothers vaccinated in this pregnancy exposure period mostly received an mRNA vaccine (73.7% Pfizer-BioNTech BNT162b2 and 7.9% Moderna mRNA-1273). Of the 6731 babies whose mothers were vaccinated in the pregnancy exposure period, 153 had any anomaly and 120 had a non-genetic anomaly. Primary analyses find no association between any vaccination and any anomaly (adjusted Odds Ratio [aOR] = 1.01, 95% Confidence Interval [CI] = 0.83-1.24) or non-genetic anomalies (aOR = 1.00, 95% CI = 0.81-1.22). Primary analyses also find no association between SARS-CoV-2 infection and any anomaly (aOR = 1.02, 95% CI = 0.66-1.60) or non-genetic anomalies (aOR = 0.94, 95% CI = 0.57-1.54). Findings are robust to sensitivity analyses. These data provide reassurance on the safety of vaccination, in particular mRNA vaccines, just before or in early pregnancy

    Multi-targeted kinase inhibition alleviates mTOR inhibitor resistance in triple-negative breast cancer

    Get PDF
    Purpose: Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for effective treatment of the refractory TNBC subtype. Methods: A broad kinase inhibitor screen was applied to profile the proliferative responses of TNBC cells, revealing resistance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation. Results: The combination treatment with AEE788 and rapalog effectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment. Conclusions: mTOR signaling is highly activated in TNBC tumors. As single rapalog treatment is insufficient to block mTOR signaling in rapalog-resistant TNBC cells, our results thus provide a potential multi-kinase inhibitor combinatorial strategy to overcome mTOR-targeted therapy resistance in TNBC cells

    A population-based matched cohort study of early pregnancy outcomes following COVID-19 vaccination and SARS-CoV-2 infection

    Get PDF
    Our thanks to the EAVE II Patient Advisory Group and Sands charity for their support. COPS is a sub-study of EAVE II, which is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE—The Health Data Research Hub for Respiratory Health [MC_PC_19004], which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. Additional support has been provided through Public Health Scotland and Scottish Government DG Health and Social Care and the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation. COPS has received additional funding from Tommy’s charity. S.J.S. is funded by a Wellcome Trust Clinical Career Development Fellowship (209560/Z/17/Z). S.V.K. acknowledges funding from an NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2) and the Scottish Government Chief Scientist Office (SPHSU17). K.B. is funded by a Wellcome Senior Research Fellowship (220283/Z/20/Z).Peer reviewedPublisher PD
    corecore