13,270 research outputs found

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s \rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    No full text
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE

    Neutrino Capture and r-Process Nucleosynthesis

    Get PDF
    We explore neutrino capture during r-process nucleosynthesis in neutrino-driven ejecta from nascent neutron stars. We focus on the interplay between charged-current weak interactions and element synthesis, and we delineate the important role of equilibrium nuclear dynamics. During the period of coexistence of free nucleons and light and/or heavy nuclei, electron neutrino capture inhibits the r-process. At all stages, capture on free neutrons has a larger impact than capture on nuclei. However, neutrino capture on heavey nuclei by itself, if it is very strong, is also detrimental to the r-process until large nuclear equilibrium clusters break down and the classical neutron-capture phase of the r-process begins. The sensitivity of the r-process to neutrino irradiation means that neutrino-capture effects can strongly constrain the r-process site, neutrino physics, or both. These results apply also to r-process scenarios other than neutrino-heated winds.Comment: 20 pages, 17 figures, Submitted to Physical Review

    A fixed-base simulation study of two STOL aircraft flying curved, descending instrument approach paths

    Get PDF
    A real-time, fixed-base simulation study has been conducted to determine the curved, descending approach paths (within passenger-comfort limits) that would be acceptable to pilots, the flight-director-system logic requirements for curved-flight-path guidance, and the paths which can be flown within proposed microwave landing system (MLS) coverage angles. Two STOL aircraft configurations were used in the study. Generally, no differences in the results between the two STOL configurations were found. The investigation showed that paths with a 1828.8 meter turn radius and a 1828.8 meter final-approach distance were acceptable without winds and with winds up to at least 15 knots for airspeeds from 75 to 100 knots. The altitude at roll-out from the final turn determined which final-approach distances were acceptable. Pilots preferred to have an initial straight leg of about 1 n. mi. after MLS guidance acquisition before turn intercept. The size of the azimuth coverage angle necessary to meet passenger and pilot criteria depends on the size of the turn angle: plus or minus 60 deg was adequate to cover all paths execpt ones with a 180 deg turn

    On the detectability of extragalactic fast radio transients

    Get PDF
    Recent discoveries of highly dispersed millisecond radio bursts by Thornton et al. in a survey with the Parkes radio telescope at 1.4 GHz point towards an emerging population of sources at cosmological distances whose origin is currently unclear. Here we demonstrate that the scattering effects at lower radio frequencies are less than previously thought, and that the bursts could be detectable at redshifts out to about z=0.5z=0.5 in surveys below 1 GHz. Using a source model in which the bursts are standard candles with bolometric luminosities 8×1044\sim 8 \times 10^{44} ergs/s uniformly distributed per unit comoving volume, we derive an expression for the observed peak flux density as a function of redshift and use this, together with the rate estimates found by Thornton et al. to find an empirical relationship between event rate and redshift probed by a given survey. The non-detection of any such events in Arecibo 1.4 GHz survey data by Deneva et al., and the Allen Telescope Array survey by Simeon et al. is consistent with our model. Ongoing surveys in the 1--2 GHz band should result in further discoveries. At lower frequencies, assuming a typical radio spectral index α=1.4\alpha=-1.4, the predicted peak flux densities are 10s of Jy. As a result, surveys of such a population with current facilities would not necessarily be sensitivity limited and could be carried out with small arrays to maximize the sky coverage. We predict that sources may already be present in 350-MHz surveys with the Green Bank Telescope. Surveys at 150 MHz with 30 deg2^2 fields of view could detect one source per hour above 30 Jy.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS on 2013 July 25. Received 2013 July 24; in original form 2013 May 3

    Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes

    Get PDF
    The cytoplasmic form of protein kinase C (PKC) is inactive, probably because the pseudosubstrate region in its regulatory domain blocks the substrate-binding site in its kinase domain. Calcium ions cause a translocation to the membrane: maximum activation requires a negative lipid such as phosphatidylserine (PS) and the neutral lipid diacylglycerol (DAG) but the mechanism by which PS and DAG activate PKC is unknown. Pseudosubstrate region 19–36 of PKC-beta has six basic and one acidic amino acids and region 19–29 has five basic and no acidic amino acids. Since any binding of basic residues in the pseudosubstrate region to acidic lipids in the membrane should stabilize the active form of PKC, we studied how peptides with amino acids equivalent to residues 19–36 and 19–29 of PKC-beta bound to phospholipid vesicles. We made equilibrium dialysis, filtration, and electrophoretic mobility measurements. The fraction of bound peptide is a steep sigmoidal function of the mol fraction of negative lipid in the membrane, as predicted from a simple theoretical model that assumes the basic residues provide identical independent binding sites. The proportionality constant between the number of bound peptides/area and the concentration of peptide in the bulk aqueous phase is 1 micron for a membrane with 25% negative lipid formed in 0.1 M KCl. Equivalently, the association constant of the peptide with the membrane is 10(4) M-1, or the net binding energy is 6 kcal/mol. Thus the interaction of basic residues in the pseudosubstrate region with acidic lipids in the membrane could provide 6 kcal/mol free energy towards stabilizing the active form of PKC

    The Double Pulsar Eclipses I: Phenomenology and Multi-frequency Analysis

    Get PDF
    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to probe directly the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al., and investigated the radio frequency dependence of the duration and depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor (~ 10^5). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere which would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.Comment: 9 pages, 7 figures, 3 tables, ApJ in pres
    corecore