1,128 research outputs found

    Oleophobic composite films based on multi-layer graphitic scaffolding

    Get PDF
    A new oleophobic composite material synthesised by utilising plasma-exfoliated multi-layered graphitic (MLG) material as scaffolding is presented herein. The composite consisted of a polyelectrolyte/fluorosurfactant complex derived from polydiallyldimethylammonium chloride (PDDA) and sodium perfluorooctanoate (PFO) and was used to prepare free-standing MLG composite films

    Plant Identity Influences Decomposition through More Than One Mechanism

    Get PDF
    Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss

    The forkhead transcription factor FOXL2 is expressed in somatic cells of the human ovary prior to follicle formation

    Get PDF
    Interactions between germ cells and surrounding somatic cells are central to ovarian development as well as later function. Disruption of these interactions arising from abnormalities in either cell type can lead to premature ovarian failure (POF). The forkhead transcription factor FOXL2 is a candidate POF factor, and mutations in the FOXL2 gene are associated with syndromic and non-syndromic ovarian failure. Foxl2-deficient mice display major defects in primordial follicle activation with consequent follicle loss, and earlier roles in gonadal development and sex determination have also been suggested. However, despite its importance no data presently exist on its expression in the developing human ovary. Expression of FOXL2 mRNA was demonstrated in the human fetal ovary between 8 and 19 weeks gestation, thus from soon after sex determination to primordial follicle development. Expression in the ovary was higher after 14 weeks than at earlier gestation weeks and was very low in the fetal testis at all ages examined. Immunolocalization revealed FOXL2 expression to be confined to somatic cells, both adjacent to germ cells and those located in the developing ovarian stroma. These cells are the site of action of oocyte-derived activin signalling, but in vitro treatment of human fetal ovaries with activin failed to reveal any regulation of FOXL2 transcription by this pathway. In summary, the expression of FOXL2 in somatic cells of the developing human ovary before and during follicle formation supports a conserved and continuing role for this factor in somatic/germ cell interactions from the earliest stages of human ovarian development

    Darwin Core: An Evolving Community-Developed Biodiversity Data Standard

    Get PDF
    Biodiversity data derive from myriad sources stored in various formats on many distinct hardware and software platforms. An essential step towards understanding global patterns of biodiversity is to provide a standardized view of these heterogeneous data sources to improve interoperability. Fundamental to this advance are definitions of common terms. This paper describes the evolution and development of Darwin Core, a data standard for publishing and integrating biodiversity information. We focus on the categories of terms that define the standard, differences between simple and relational Darwin Core, how the standard has been implemented, and the community processes that are essential for maintenance and growth of the standard. We present case-study extensions of the Darwin Core into new research communities, including metagenomics and genetic resources. We close by showing how Darwin Core records are integrated to create new knowledge products documenting species distributions and changes due to environmental perturbations

    Oleophobic coated composite materials based on multi-layer graphitic scaffolding: applications within aircraft propellant tanks and oil-spill clean-up †

    Get PDF
    The preparation of oleophobic materials coated with a composite based on a multi-layer graphitic scaffolding is reported herein. A range of substrates were employed for this purpose including Kevlar, carbon fibre, glass fibre, nylon and stainless steel mesh. These were utilised, in comparison with free-standing film versions of the composite material, to investigate their enhanced ability to facilitate water penetration whilst simultaneously retaining the oleophobic behaviour. The materials demonstrated efficient oil/water separations and reusability. The free-standing films and coated substrates were characterised in detail via a range of spectroscopic and analytical techniques. Contact angle measurements for aviation Jet A-1 fuel on various coated substrates ranged from 96.9–107.0° whilst for hexadecane and silicone oil, contact angles of 90.6–120.3° and 74.5–103.3° were recorded, respectively. These values were slightly lower than the contact angles for the corresponding free standing film versions which were 111.9°, 126.4° and 105.9° for Jet A-1 fuel, hexadecane and silicone oil, respectively. BET surface area analysis of composite and films showed type IIb isotherms with H3-type hysteresis. T-Plot analysis was carried out to quantify external surface area of the composite and film in comparison to the base multilayered graphitic material scaffold. The morphology of the materials was analysed by SEM imaging to show the extent and degree of coating on the composite material upon the substrates. The application of these coated substrates as membranes within the context of aircraft propellant tanks and oil-spill removal was also explored, suggesting that coated carbon fibre and coated nylon serve as promising candidates for oil/water separation within these applications

    Fgf9 and Wnt4 Act as Antagonistic Signals to Regulate Mammalian Sex Determination

    Get PDF
    The genes encoding members of the wingless-related MMTV integration site (WNT) and fibroblast growth factor (FGF) families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9) and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch— Sry in the case of mammals—is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways
    corecore