306 research outputs found

    Follow-Up Observations of PTFO 8-8695: A 3 MYr Old T-Tauri Star Hosting a Jupiter-mass Planetary Candidate

    Get PDF
    We present Spitzer 4.5\micron\ light curve observations, Keck NIRSPEC radial velocity observations, and LCOGT optical light curve observations of PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital period (0.45 days). Previous work by \citet{vaneyken12} and \citet{barnes13} predicts that the stellar rotation axis and the planetary orbital plane should precess with a period of 300600300 - 600 days. As a consequence, the observed transits should change shape and depth, disappear, and reappear with the precession. Our observations indicate the long-term presence of the transit events (>3>3 years), and that the transits indeed do change depth, disappear and reappear. The Spitzer observations and the NIRSPEC radial velocity observations (with contemporaneous LCOGT optical light curve data) are consistent with the predicted transit times and depths for the $M_\star = 0.34\ M_\odot$ precession model and demonstrate the disappearance of the transits. An LCOGT optical light curve shows that the transits do reappear approximately 1 year later. The observed transits occur at the times predicted by a straight-forward propagation of the transit ephemeris. The precession model correctly predicts the depth and time of the Spitzer transit and the lack of a transit at the time of the NIRSPEC radial velocity observations. However, the precession model predicts the return of the transits approximately 1 month later than observed by LCOGT. Overall, the data are suggestive that the planetary interpretation of the observed transit events may indeed be correct, but the precession model and data are currently insufficient to confirm firmly the planetary status of PTFO~8-8695b.Comment: Accepted for publication in The Astrophysical Journa

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Optical-Model Description of Time-Reversal Violation

    Full text link
    A time-reversal-violating spin-correlation coefficient in the total cross section for polarized neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-noninvariant, parity-conserving ``five-fold" interaction in the neutron-nucleus optical potential. Results are presented for the system n+165Hon + {^{165}{\rm Ho}} for neutron incident energies covering the range 1--20 MeV. From existing experimental bounds, a strength of 2±102 \pm 10 keV is deduced for the real and imaginary parts of the five-fold term, which implies an upper bound of order 10410^{-4} on the relative TT-odd strength when compared to the central real optical potential.Comment: 11 pages (Revtex

    Benefit-Cost Analysis of FEMA Hazard Mitigation Grants

    Get PDF
    Mitigation ameliorates the impact of natural hazards on communities by reducing loss of life and injury, property and environmental damage, and social and economic disruption. The potential to reduce these losses brings many benefits, but every mitigation activity has a cost that must be considered in our world of limited resources. In principle benefit-cost analysis (BCA) can be used to assess a mitigation activity’s expected net benefits (discounted future benefits less discounted costs), but in practice this often proves difficult. This paper reports on a study that refined BCA methodologies and applied them to a national statistical sample of FEMA mitigation activities over a ten-year period for earthquake, flood, and wind hazards. The results indicate that the overall benefit-cost ratio for FEMA mitigation grants is about 4 to 1, though the ratio varies according to hazard and mitigation type.

    Gemini Near Infrared Spectrograph -- Distant Quasar Survey: Augmented Spectroscopic Catalog and a Prescription for Correcting UV-Based Quasar Redshifts

    Full text link
    Quasars at z  1z~{\gtrsim}~1 most often have redshifts measured from rest-frame ultraviolet emission lines. One of the most common such lines, C IV λ1549{\lambda}1549, shows blueshifts up to  5000 km s1{\approx}~5000~\rm{km~s^{-1}}, and in rare cases even higher. This blueshifting results in highly uncertain redshifts when compared to redshift determinations from rest-frame optical emission lines, e.g., from the narrow [O III] λ5007{\lambda}5007 feature. We present spectroscopic measurements for 260 sources at 1.55  z  3.501.55~{\lesssim}~z~{\lesssim}~3.50 having 28.0  Mi  30.0-28.0~{\lesssim}~M_i~{\lesssim}~-30.0 mag from the Gemini Near Infrared Spectrograph - Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the previous iteration which contained 226 of the 260 sources whose measurements are improved upon in this work. We obtain reliable systemic redshifts based on [O III] λ5007{\lambda}5007 for a subset of 121 sources which we use to calibrate prescriptions for correcting UV-based redshifts. These prescriptions are based on a regression analysis involving C IV full-width-at-half-maximum intensity and equivalent width, along with the UV continuum luminosity at a rest-frame wavelength of 1350 A. Applying these corrections can improve the accuracy and the precision in the C IV-based redshift by up to  850 km s1{\sim}~850~\rm{km~s^{-1}} and  150 km s1{\sim}~150~\rm{km~s^{-1}}, respectively, which correspond to  8.5{\sim}~8.5 Mpc and  1.5{\sim}~1.5 Mpc in comoving distance at z = 2.5z~=~2.5. Our prescriptions also improve the accuracy of the best available multi-feature redshift determination algorithm by  100 km s1{\sim}~100~\rm{km~s^{-1}}, indicating that the spectroscopic properties of the C IV emission line can provide robust redshift estimates for high-redshift quasars. We discuss the prospects of our prescriptions for cosmological and quasar studies utilizing upcoming large spectroscopic surveys.Comment: 20 pages (AASTeX 6.3.1), 8 figures, accepted for publication in Ap

    The angular distribution of the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+de++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+de+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    Effect of P to A Mutation of the N-Terminal Residue Adjacent to the Rgd Motif on Rhodostomin: Importance of Dynamics in Integrin Recognition

    Get PDF
    Rhodostomin (Rho) is an RGD protein that specifically inhibits integrins. We found that Rho mutants with the P48A mutation 4.4–11.5 times more actively inhibited integrin α5β1. Structural analysis showed that they have a similar 3D conformation for the RGD loop. Docking analysis also showed no difference between their interactions with integrin α5β1. However, the backbone dynamics of RGD residues were different. The values of the R2 relaxation parameter for Rho residues R49 and D51 were 39% and 54% higher than those of the P48A mutant, which caused differences in S2, Rex, and τe. The S2 values of the P48A mutant residues R49, G50, and D51 were 29%, 14%, and 28% lower than those of Rho. The Rex values of Rho residues R49 and D51 were 0.91 s−1 and 1.42 s−1; however, no Rex was found for those of the P48A mutant. The τe values of Rho residues R49 and D51 were 9.5 and 5.1 times lower than those of P48A mutant. Mutational study showed that integrin α5β1 prefers its ligands to contain (G/A)RGD but not PRGD sequences for binding. These results demonstrate that the N-terminal proline residue adjacent to the RGD motif affect its function and dynamics, which suggests that the dynamic properties of the RGD motif may be important in Rho's interaction with integrin α5β1

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems

    Barriers to the acceptance of electronic medical records by physicians from systematic review to taxonomy and interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this research is to identify, categorize, and analyze barriers perceived by physicians to the adoption of Electronic Medical Records (EMRs) in order to provide implementers with beneficial intervention options.</p> <p>Methods</p> <p>A systematic literature review, based on research papers from 1998 to 2009, concerning barriers to the acceptance of EMRs by physicians was conducted. Four databases, "Science", "EBSCO", "PubMed" and "The Cochrane Library", were used in the literature search. Studies were included in the analysis if they reported on physicians' perceived barriers to implementing and using electronic medical records. Electronic medical records are defined as computerized medical information systems that collect, store and display patient information.</p> <p>Results</p> <p>The study includes twenty-two articles that have considered barriers to EMR as perceived by physicians. Eight main categories of barriers, including a total of 31 sub-categories, were identified. These eight categories are: A) Financial, B) Technical, C) Time, D) Psychological, E) Social, F) Legal, G) Organizational, and H) Change Process. All these categories are interrelated with each other. In particular, Categories G (Organizational) and H (Change Process) seem to be mediating factors on other barriers. By adopting a change management perspective, we develop some barrier-related interventions that could overcome the identified barriers.</p> <p>Conclusions</p> <p>Despite the positive effects of EMR usage in medical practices, the adoption rate of such systems is still low and meets resistance from physicians. This systematic review reveals that physicians may face a range of barriers when they approach EMR implementation. We conclude that the process of EMR implementation should be treated as a change project, and led by implementers or change managers, in medical practices. The quality of change management plays an important role in the success of EMR implementation. The barriers and suggested interventions highlighted in this study are intended to act as a reference for implementers of Electronic Medical Records. A careful diagnosis of the specific situation is required before relevant interventions can be determined.</p

    Broad-line region in NGC 4151 monitored by two decades of reverberation mapping campaigns. I. Evolution of structure and kinematics

    Full text link
    We report the results of long-term reverberation mapping (RM) campaigns of the nearby active galactic nuclei (AGN) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad Hβ\beta line and 5100\,{\AA} continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using {\it HST} imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the Hβ\beta time delays are correlated with the 5100\,{\AA} luminosities as τHβL51000.46±0.16\tau_{\rm H\beta}\propto L_{5100}^{0.46\pm0.16}. This is remarkably consistent with Bentz et al. (2013)'s global size-luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the Hβ\beta line, showing diverse structures (outflows, inflows and disks). Combining our results with previous independent measurements, we find the measured dynamics of the Hβ\beta broad-line region (BLR) are possibly related to the long-term trend of the luminosity. There is also a possible additional \sim1.86 years time lag between the variation in BLR radius and luminosity. These results suggest that dynamical changes in the BLR may be driven by the effects of radiation pressure.Comment: Accepted for publication in MNRAS; comments welcome
    corecore