1,264 research outputs found

    Air bearing Patent

    Get PDF
    Air bearings for near frictionless transfer of loads from one body to anothe

    Chemical kinetic modeling of propane oxidation behind shock waves

    Get PDF
    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps

    A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures

    Get PDF
    A chemical kinetic reaction mechanism for the oxidation of silane/hydrogen mixtures is presented and discussed. Shock-tube ignition delay time data were used to evaluate and refine the mechanism. Good agreement between experimental results and the results predicted by the mechanism was obtained by adjusting the rate coefficient for the reaction SiH3 + O2 yields SiH2O + OH. The reaction mechanism was used to theoretically investigate the ignition characteristics of silane/hydrogen mixtures. The results revealed that over the entire range of temperature examined (800 K to 1200 K), substantial reduction in ignition delay times is obtained when silane is added to hydrogen

    The Use of Sr/Ga Ratios in the Determination of Trophic Levels of Contemporary and Recent Human and Faunal Populations

    Get PDF
    Previous studies have shown that Sr/Ca ratios were good indicators of trophic levels of human and faunal populations in a given geographical region. These studies have operated under the assumption that removal of debris and post-depositional matter from the bone by using a wash protocol will bring the Sr/Ca ratios to their original state. this study concludes that that is an erroneous assumption. Wildebeest samples collected at death and ten years later were analyzed for Sr/Ca ratios and the results were negative for the return of the tenth-year sample to the ratios of the first-year sample after washing. Andrew Sillen\u27s recent Sr/Ca study is followed in this present study and his conclusions and assumptions are discussed

    Ignition of mixtures of SiH sub 4, CH sub 4, O sub 2, and Ar or N sub 2 behind reflected shock waves

    Get PDF
    Ignition delay times in mixtures of methane, silane, and oxygen diluted with argon and nitrogen were measured behind reflected shock waves generated in the chemical kinetic shock tube at Langley Research Center. The delay times were inferred from the rapid increase in pressure that occurs at ignition, and the ignition of methane was verified from the emission of infrared radiation from carbon dioxide. Pressures of 1.25 atm and temperatures from 1100 K to 1300 K were generated behind the reflected shocks; these levels are representative of those occurring within a supersonic Ramjet combustor. Expressions for the ignition delay time as a function of temperature were obtained from least squares curve fits to the data for overall equivalence ratios of 0.7 and 1.0. The ignition delay times with argon as the diluent were longer than those with nitrogen as the diluent. The infrared wavelength observations at 4.38 microns for carbon dioxide indicated that silane and methane ignited simultaneously (i.e., within the time resolution of the measurement). A combined chemical kinetic mechanism for mixtures of silane, methane, oxygen, and argon or nitrogen was assembled from one mechanism that accurately predicted the ignition of methane and a second mechanism that accurately predicted silane hydrogen ignition. Comparisons between this combined mechanism and experiment indicated that additional reactions, possibly between silyl and methyl fragments, are needed to develop a good silane methane mechanism

    Chemical kinetic modeling of benzene and toluene oxidation behind shock waves

    Get PDF
    The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor

    Traditional tales and imaginary contexts in primary design and technology: a case study

    Get PDF
    Working with contexts is a key component to design and technology activity and education. The most recent iteration of the national curriculum programme of study for design and technology, in England, sets out that children between the ages of 5 and 7 “should work in a range of relevant contexts” (DfE, 2013: 193); suggested contexts including “home and school, gardens and playgrounds, the local community, industry and the wider environment”. Whilst these are real world and familiar contexts, fictional contexts also provide opportunities for developing “creative spaces” in which to speculate and discuss. This intrinsic case study explores the work of two primary teachers’ development of a design and technology activity, where traditional tales provide the context. Children explore design problems and opportunities through the eyes of the Billy Goats Gruff, as they seek assistance to cross the river. Data was gathered through semi-structured interviews and document analysis of children’s design work. The case study reveals how multidisciplinary and imaginative approaches to teaching and learning in the primary classroom simulate and nurture design thinking, dialogue and critique

    EXAFS study of nickel tetracarbonyl and nickel clusters in zeolite Y

    Get PDF
    Adsorption and thermal decomposition of Ni(CO)4 in the cage system of zeolite Y have been studied with EXAFS, electron microscopy and IR spectroscopy , Ni(CO)4 is adsorbed as an intact molecule in both cation - free zeolite Y and NaY. Symmetry changes of the molecule in NaY are assigned to the formation of Na—OC-IMi bridges. Thermal treatment of the Ni(CO)4/NaY adduct leads to loss of CO concomitant with the formation of a binodal Ni phase. A major part of the forms clusters with diameter between 0.5 and about 1.5 nm, in addition to larger crystallites (5-30 nm), sticking at the outer surface of the zeolite matrix., The Ni-Ni scattering amplitude indicates increasing average particle size with increasing temperature

    Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

    Full text link
    A vortex in a Bose-Einstein condensate on a ring undergoes quantum dynamics in response to a quantum quench in terms of partial symmetry breaking from a uniform lattice to a biperiodic one. Neither the current, a macroscopic measure, nor fidelity, a microscopic measure, exhibit critical behavior. Instead, the symmetry memory succeeds in identifying the point at which the system begins to forget its initial symmetry state. We further identify a symmetry energy difference in the low lying excited states which trends with the symmetry memory
    corecore