8 research outputs found

    Examining the Diagnostic Yield of Tumour Testing and Qualifying Germline Concordance for Hereditary Cancer Variants in Patients with High-Grade Serous Carcinoma

    Get PDF
    Despite advances in treatment, prognosis for most patients with high-grade serous carcinoma (HGSC) remains poor. Genomic alterations in the homologous recombination (HR) pathway are used for cancer risk assessment and render tumours sensitive to platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPi), which can be associated with more favourable outcomes. In addition to patients with tumours containing BRCA1 or BRCA2 pathologic variants, there is emerging evidence that patients with tumours harbouring pathologic variants in other HR genes may also benefit from PARPi therapy. The objective of this study is to assess the feasibility of primary-tumour testing by examining the concordance of variant detection between germline and tumour-variant status using a custom hereditary cancer gene panel (HCP). From April 2019 to November 2020, HCP variant testing was performed on 146 HGSC formalin-fixed, paraffin-embedded tissue samples using next-generation sequencing. Of those, 78 patients also underwent HCP germline testing using blood samples. A pathogenic variant was detected in 41.1% (60/146) of tumours tested, with 68.3% (41/60) having either a BRCA1 or BRCA2 variant (n = 36), or BRCA1/2 plus a second variant (n = 5), and 31.2% (19/60) carrying a pathogenic variant in another HCP gene. The overall variant rate among the paired germline and tumour samples was 43.6% (34/78), with the remaining 56% (44/78) having no pathogenic variant detected in the germline or tumour. The overall BRCA1/2 variant rate for paired samples was 33.3% (26/78), with germline variants detected in 11.5% (9/78). A non-BRCA1/2 germline variant in another HCP gene was detected in 9.0% (7/78). All germline variants were detected in the tumour, demonstrating 100% concordance. These data provide evidence supporting the feasibility of primary-tumour testing for detecting germline and somatic variants in HCP genes in patients with HGSC, which can be used to guide clinical decision-making, and may provide opportunity for improving patient triage and clinical genetic referral practices

    p53 immunohistochemistry in endometrial cancer:clinical and molecular correlates in the PORTEC-3 trial

    Get PDF
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC)

    Examining the Diagnostic Yield of Tumour Testing and Qualifying Germline Concordance for Hereditary Cancer Variants in Patients with High-Grade Serous Carcinoma

    Get PDF
    Despite advances in treatment, prognosis for most patients with high-grade serous carcinoma (HGSC) remains poor. Genomic alterations in the homologous recombination (HR) pathway are used for cancer risk assessment and render tumours sensitive to platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPi), which can be associated with more favourable outcomes. In addition to patients with tumours containing BRCA1 or BRCA2 pathologic variants, there is emerging evidence that patients with tumours harbouring pathologic variants in other HR genes may also benefit from PARPi therapy. The objective of this study is to assess the feasibility of primary-tumour testing by examining the concordance of variant detection between germline and tumour-variant status using a custom hereditary cancer gene panel (HCP). From April 2019 to November 2020, HCP variant testing was performed on 146 HGSC formalin-fixed, paraffin-embedded tissue samples using next-generation sequencing. Of those, 78 patients also underwent HCP germline testing using blood samples. A pathogenic variant was detected in 41.1% (60/146) of tumours tested, with 68.3% (41/60) having either a BRCA1 or BRCA2 variant (n = 36), or BRCA1/2 plus a second variant (n = 5), and 31.2% (19/60) carrying a pathogenic variant in another HCP gene. The overall variant rate among the paired germline and tumour samples was 43.6% (34/78), with the remaining 56% (44/78) having no pathogenic variant detected in the germline or tumour. The overall BRCA1/2 variant rate for paired samples was 33.3% (26/78), with germline variants detected in 11.5% (9/78). A non-BRCA1/2 germline variant in another HCP gene was detected in 9.0% (7/78). All germline variants were detected in the tumour, demonstrating 100% concordance. These data provide evidence supporting the feasibility of primary-tumour testing for detecting germline and somatic variants in HCP genes in patients with HGSC, which can be used to guide clinical decision-making, and may provide opportunity for improving patient triage and clinical genetic referral practices

    p53 immunohistochemistry in endometrial cancer: clinical and molecular correlates in the PORTEC-3 trial

    No full text
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC).</p

    p53 immunohistochemistry in endometrial cancer: clinical and molecular correlates in the PORTEC-3 trial

    Get PDF
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC)

    Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): final results of an international, open-label, multicentre, randomised, phase 3 trial

    No full text
    corecore