224 research outputs found

    Experimental aluminum pathology in rabbits: effects of hydrophilic and lipophilic compounds.

    Get PDF
    Aluminum lactate [Al(lact)3] (hydrophilic, hydrolytically unstable) and aluminum acetylacetonate [Al(acae)3] (lipophilic, hydrolytically stable) were tested as potential toxicants to rabbits upon IV administration both as aqueous solutions and as liposome suspensions. Both chemicals behaved as cardiotoxic agents when administered as aqueous solutions, but Al(acae)3 was at least two orders of magnitude more active than Al(lact)3. Al(acae)3, but not Al(lact)3, caused myocardial infarcts resembling those in humans (with contraction bands) at doses as low as 0.24 mg/kg body weight, as well as a prominent acanthocytosis. Al(lact)3, when administered as a liposome suspension, was about 300 times more toxic than in aqueous solution, although cardiac damage was not infarctual in character. Both chemical and physical speciation of aluminum(III) thus play an essential role in determining the toxicity of the metal

    Aqueous Dissolution of Alzheimer's Disease Ab Amyloid Deposits by Biometal Depletion

    Get PDF
    Zn(II) and Cu(II) precipitate Abeta in vitro into insoluble aggregates that are dissolved by metal chelators. We now report evidence that these biometals also mediate the deposition of Abeta amyloid in Alzheimer's disease, since the solubilization of Abeta from post-mortem brain tissue was significantly increased by the presence of chelators, EGTA, N,N,N',N'-tetrakis(2-pyridyl-methyl) ethylene diamine, and bathocuproine. Efficient extraction of Abeta also required Mg(II) and Ca(II). The chelators were more effective in extracting Abeta from Alzheimer's disease brain tissue than age-matched controls, suggesting that metal ions differentiate the chemical architecture of amyloid in Alzheimer's disease. Agents that specifically chelate copper and zinc ions but preserve Mg(II) and Ca(II) may be of therapeutic value in Alzheimer's disease

    Aluminium, Neurotoxicology and Dementia

    No full text
    • …
    corecore