933 research outputs found

    Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    Full text link
    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.Comment: 61 page

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe

    Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism

    Get PDF
    This essay examines the philosophical significance of Ω\Omega-logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω\Omega-logical validity can then be countenanced within a coalgebraic logic, and Ω\Omega-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω\Omega-logical validity correspond to those of second-order logical consequence, Ω\Omega-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets

    First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

    Full text link
    The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon, to discriminate signal from background down to 4.5 keV nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x 10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a WIMP mass of 30 GeV/c^2. This result further constrains predictions of supersymmetric models.Comment: accepted for publication in Phys. Rev. Let

    Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    Get PDF
    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5 page appendix on instrumentation R&

    Status of the LUX Dark Matter Search

    Full text link
    The Large Underground Xenon (LUX) dark matter search experiment is currently being deployed at the Homestake Laboratory in South Dakota. We will highlight the main elements of design which make the experiment a very strong competitor in the field of direct detection, as well as an easily scalable concept. We will also present its potential reach for supersymmetric dark matter detection, within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc

    Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    Full text link
    The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the \mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222^{222}Rn decay rate in the liquid argon was measured to be between 16 and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry
    • …
    corecore