1,221 research outputs found
Boosting advice and knowledge sharing among healthcare professionals
Purpose: This study investigates the dynamics of knowledge sharing in
healthcare, exploring some of the factors that are more likely to influence the
evolution of idea sharing and advice seeking in healthcare.
Design/methodology/approach: We engaged 50 pediatricians representing many
subspecialties at a mid-size US children's hospital using a social network
survey to map and measure advice seeking and idea sharing networks. Through the
application of Stochastic Actor-Oriented Models, we compared the structure of
the two networks prior to a leadership program and eight weeks post conclusion.
Findings: Our models indicate that healthcare professionals carefully and
intentionally choose with whom they share ideas and from whom to seek advice.
The process is fluid, non-hierarchical and open to changing partners.
Significant transitivity effects indicate that the processes of knowledge
sharing can be supported by mediation and brokerage. Originality: Hospital
administrators can use this method to assess knowledge-sharing dynamics, design
and evaluate professional development initiatives, and promote new
organizational structures that break down communication silos. Our work
contributes to the literature on knowledge sharing in healthcare by adopting a
social network approach, going beyond the dyadic level, and assessing the
indirect influence of peers' relationships on individual networks
Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism
This essay examines the philosophical significance of -logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of -logical validity can then be countenanced within a coalgebraic logic, and -logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of -logical validity correspond to those of second-order logical consequence, -logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets
A search for light dark matter in XENON10 data
We report results of a search for light (<10 GeV) particle dark matter with
the XENON10 detector. The event trigger was sensitive to a single electron,
with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear
recoil energy. Considering spin-independent dark matter-nucleon scattering, we
exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle
mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic
dark matter interpretations of excess low-energy events observed by CoGeNT and
CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains
erratum. Note v3==v2 but without \linenumber
Constraints on inelastic dark matter from XENON10
It has been suggested that dark matter particles which scatter inelastically
from detector target nuclei could explain the apparent incompatibility of the
DAMA modulation signal (interpreted as evidence for particle dark matter) with
the null results from CDMS-II and XENON10. Among the predictions of
inelastically interacting dark matter are a suppression of low-energy events,
and a population of nuclear recoil events at higher nuclear recoil equivalent
energies. This is in stark contrast to the well-known expectation of a falling
exponential spectrum for the case of elastic interactions. We present a new
analysis of XENON10 dark matter search data extending to E keV
nuclear recoil equivalent energy. Our results exclude a significant region of
previously allowed parameter space in the model of inelastically interacting
dark matter. In particular, it is found that dark matter particle masses
GeV are disfavored.Comment: 8 pages, 4 figure
First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg
xenon dual phase time projection chamber (XeTPC) to search for dark matter
weakly interacting massive particles (WIMPs). The detector measures
simultaneously the scintillation and the ionization produced by radiation in
pure liquid xenon, to discriminate signal from background down to 4.5 keV
nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired
between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4
kg, excludes previously unexplored parameter space, setting a new 90% C.L.
upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x
10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a
WIMP mass of 30 GeV/c^2. This result further constrains predictions of
supersymmetric models.Comment: accepted for publication in Phys. Rev. Let
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier
These reports present the results of the 2013 Community Summer Study of the
APS Division of Particles and Fields ("Snowmass 2013") on the future program of
particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the
program of research relevant to cosmology and the early universe. This area
includes the study of dark matter and the search for its particle nature, the
study of dark energy and inflation, and cosmic probes of fundamental
symmetries.Comment: 61 page
Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare
low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The
radiogenic backgrounds in the LUX detector have been measured and compared with
Monte Carlo simulation. Measurements of LUX high-energy data have provided
direct constraints on all background sources contributing to the background
model. The expected background rate from the background model for the 85.3 day
WIMP search run is
~events~keV~kg~day
in a 118~kg fiducial volume. The observed background rate is
~events~keV~kg~day,
consistent with model projections. The expectation for the radiogenic
background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
Magnetic trapping of ultracold neutrons
Three-dimensional magnetic confinement of neutrons is reported. Neutrons are
loaded into an Ioffe-type superconducting magnetic trap through inelastic
scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low
energy and in the appropriate spin state are confined by the magnetic field
until they decay. The electron resulting from neutron decay produces
scintillations in the liquid helium bath that results in a pulse of extreme
ultraviolet light. This light is frequency downconverted to the visible and
detected. Results are presented in which 500 +/- 155 neutrons are magnetically
trapped in each loading cycle, consistent with theoretical predictions. The
lifetime of the observed signal, 660 s +290/-170 s, is consistent with the
neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review
- …