322 research outputs found

    Evaluating case studies of community-oriented integrated care.

    Get PDF
    This paper summarises a ten-year conversation within London Journal of Primary Care about the nature of community-oriented integrated care (COIC) and how to develop and evaluate it. COIC means integration of efforts for combined disease-treatment and health-enhancement at local, community level. COIC is similar to the World Health Organisation concept of a Community-Based Coordinating Hub - both require a local geographic area where different organisations align their activities for whole system integration and develop local communities for health. COIC is a necessary part of an integrated system for health and care because it enables multiple insights into 'wicked problems', and multiple services to integrate their activities for people with complex conditions, at the same time helping everyone to collaborate for the health of the local population. The conversation concludes seven aspects of COIC that warrant further attention

    Human ecological perspectives within a residential treatment setting for children

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44272/1/10566_2005_Article_BF01554427.pd

    Critical Exponents of the Classical 3D Heisenberg Model: A Single-Cluster Monte Carlo Study

    Full text link
    We have simulated the three-dimensional Heisenberg model on simple cubic lattices, using the single-cluster Monte Carlo update algorithm. The expected pronounced reduction of critical slowing down at the phase transition is verified. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors. In one set of simulations we employ the usual finite-size scaling methods to compute the critical exponents ν,α,β,γ,η\nu,\alpha,\beta,\gamma, \eta from a few measurements in the vicinity of the critical point, making extensive use of histogram reweighting and optimization techniques. In another set of simulations we report measurements of improved estimators for the spatial correlation length and the susceptibility in the high-temperature phase, obtained on lattices with up to 1003100^3 spins. This enables us to compute independent estimates of ν\nu and γ\gamma from power-law fits of their critical divergencies.Comment: 33 pages, 12 figures (not included, available on request). Preprint FUB-HEP 19/92, HLRZ 77/92, September 199

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    Modelling overdispersion with integer-valued moving average processes

    Get PDF
    A new first-order integer-valued moving average, INMA(1), model based on the negative binomial thinning operation defined by Risti´c et al. [21] is proposed and characterized. It is shown that this model has negative binomial (NB) marginal distribution when the innovations follow a NB distribution and therefore it can be used in situations where the data present overdispersion. Additionally, this model is extended to the bivariate context. The Generalized Method of Moments (GMM) is used to estimate the unknown parameters of the proposed models and the results of a simulation study that intends to investigate the performance of the method show that, in general, the estimates are consistent and symmetric. Finally, the proposed model is fitted to a real dataset and the quality of the adjustment is evaluated.publishe

    The random magnetic flux problem in a quantum wire

    Full text link
    The random magnetic flux problem on a lattice and in a quasi one-dimensional (wire) geometry is studied both analytically and numerically. The first two moments of the conductance are obtained analytically. Numerical simulations for the average and variance of the conductance agree with the theory. We find that the center of the band ϵ=0\epsilon=0 plays a special role. Away from ϵ=0\epsilon=0, transport properties are those of a disordered quantum wire in the standard unitary symmetry class. At the band center ϵ=0\epsilon=0, the dependence on the wire length of the conductance departs from the standard unitary symmetry class and is governed by a new universality class, the chiral unitary symmetry class. The most remarkable property of this new universality class is the existence of an even-odd effect in the localized regime: Exponential decay of the average conductance for an even number of channels is replaced by algebraic decay for an odd number of channels.Comment: 16 pages, RevTeX; 9 figures included; to appear in Physical Review

    Crossover from the chiral to the standard universality classes in the conductance of a quantum wire with random hopping only

    Full text link
    The conductance of a quantum wire with off-diagonal disorder that preserves a sublattice symmetry (the random hopping problem with chiral symmetry) is considered. Transport at the band center is anomalous relative to the standard problem of Anderson localization both in the diffusive and localized regimes. In the diffusive regime, there is no weak-localization correction to the conductance and universal conductance fluctuations are twice as large as in the standard cases. Exponential localization occurs only for an even number of transmission channels in which case the localization length does not depend on whether time-reversal and spin rotation symmetry are present or not. For an odd number of channels the conductance decays algebraically. Upon moving away from the band center transport characteristics undergo a crossover to those of the standard universality classes of Anderson localization. This crossover is calculated in the diffusive regime.Comment: 22 pages, 9 figure

    Critical Exponents, Hyperscaling and Universal Amplitude Ratios for Two- and Three-Dimensional Self-Avoiding Walks

    Get PDF
    We make a high-precision Monte Carlo study of two- and three-dimensional self-avoiding walks (SAWs) of length up to 80000 steps, using the pivot algorithm and the Karp-Luby algorithm. We study the critical exponents ν\nu and 2Δ4γ2\Delta_4 -\gamma as well as several universal amplitude ratios; in particular, we make an extremely sensitive test of the hyperscaling relation dν=2Δ4γd\nu = 2\Delta_4 -\gamma. In two dimensions, we confirm the predicted exponent ν=3/4\nu = 3/4 and the hyperscaling relation; we estimate the universal ratios  / =0.14026±0.00007\ / \ = 0.14026 \pm 0.00007,  / =0.43961±0.00034\ / \ = 0.43961 \pm 0.00034 and Ψ=0.66296±0.00043\Psi^* = 0.66296 \pm 0.00043 (68\% confidence limits). In three dimensions, we estimate ν=0.5877±0.0006\nu = 0.5877 \pm 0.0006 with a correction-to-scaling exponent Δ1=0.56±0.03\Delta_1 = 0.56 \pm 0.03 (subjective 68\% confidence limits). This value for ν\nu agrees excellently with the field-theoretic renormalization-group prediction, but there is some discrepancy for Δ1\Delta_1. Earlier Monte Carlo estimates of ν\nu, which were  ⁣0.592\approx\! 0.592, are now seen to be biased by corrections to scaling. We estimate the universal ratios  / =0.1599±0.0002\ / \ = 0.1599 \pm 0.0002 and Ψ=0.2471±0.0003\Psi^* = 0.2471 \pm 0.0003; since Ψ>0\Psi^* > 0, hyperscaling holds. The approach to Ψ\Psi^* is from above, contrary to the prediction of the two-parameter renormalization-group theory. We critically reexamine this theory, and explain where the error lies.Comment: 87 pages including 12 figures, 1029558 bytes Postscript (NYU-TH-94/09/01

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Physiological Responses and Physical Performance during Football in the Heat

    Get PDF
    PURPOSE: To examine the impact of hot ambient conditions on physical performance and physiological responses during football match-play. METHODS: Two experimental games were completed in temperate (∼ 21°C; CON) and hot ambient conditions (∼ 43°C; HOT). Physical performance was assessed by match analysis in 17 male elite players during the games and a repeated sprint test was conducted after the two game trials. Core and muscle temperature were measured and blood samples were obtained, before and after the games. RESULTS: Muscle and core temperatures were ∼ 1°C higher (P<0.05) in HOT (40.3 ± 0.1 and 39.5 ± 0.1°C, respectively) compared to CON (39.2 ± 0.1 and 38.3 ± 0.1°C). Average heart rate, plasma lactate concentration, body weight loss as well as post-game sprint performance were similar between the two conditions. Total game distance declined (P<0.05) by 7% and high intensity running (>14 km ⋅ h(-1)) by 26% in HOT compared to CON), but peak sprint speed was 4% higher (P<0.05) in HOT than in CON, while there were no differences in the quantity or length of sprints (>24 km ⋅ h(-1)) between CON and HOT. In HOT, success rates for passes and crosses were 8 and 9% higher (P<0.05), respectively, compared to CON. Delta increase in core temperature and absolute core temperature in HOT were correlated to total game distance in the heat (r = 0.85 and r = 0.53, respectively; P<0.05), whereas, total and high intensity distance deficit between CON and HOT were not correlated to absolute or delta changes in muscle or core temperature. CONCLUSION: Total game distance and especially high intensity running were lower during a football game in the heat, but these changes were not directly related to the absolute or relative changes in core or muscle temperature. However, peak sprinting speed and execution of successful passes and crosses were improved in the HOT condition
    corecore