230 research outputs found

    A bivariate first order autoregressive time series model in exponential variables (BEAR (1))

    Get PDF
    A simple time series model for bivariate exponential variables having first-order auto-regressive structure is presented. The linear random coefficient difference equation model is an adaptation of the New Exponential Autoregressive model (NEAR (2)). The process is Markovian in the bivariate sense and has correlation structure analogous to that of the Gaussian AR(1) bivariate time series model. The model exhibits a full range of positive correlations and cross-correlations. With some modification in either the innovation or the random coefficients, the model admits some negative values for the cross- correlations. The marginal processes are shown to have correlation structure of ARMA (2,1) modelsPrepared for: Naval Postgraduate School Monterey, CAhttp://archive.org/details/bivariatefirstor00dewaNAN

    Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies

    Get PDF
    A ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(III), Nd(III), Yb(III)] or another d-block ion [Zn(II), Mn(II)]. When M = Gd(III) or Mn(II) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(II) unit provides the possibility of two different types of imaging modality in a single molecular probe. In the case of Ru·Mn and Ru·Mn2 the Ru(II)-based phosphorescence is substantially reduced compared to the control complexes Ru·Zn and Ru·Zn2 due to the quenching effect of the Mn(II) centres. Ultrafast transient absorption spectroscopy studies on Ru·Mn (and Ru·Zn as a non-quenched control) reveal the occurrence of fast (<1 ns) PET in Ru·Mn, from the Mn(II) ion to the Ru(II)-based 3MLCT state, i.e. MnII–(phen˙−)–RuIII → MnIII–(phen˙−)–RuII; the resulting MnIII–(phen˙−) state decays with τ ≈ 5 ns and is non-luminescent. This occurs in conformers when an ET pathway is facilitated by a planar, conjugated bridging ligand conformation connecting the two units across the alkyne bridge but does not occur in conformers where the two units are electronically decoupled by a twisted conformation of the bridging ligand. Computational studies (DFT) on Ru·Mn confirmed both the occurrence of the PET quenching pathway and its dependence on molecular conformation. In the complexes Ru·Ln and Ru·Ln2 (Ln = Nd, Yb), sensitised near-infrared luminescence from Nd(III) or Yb(III) is observed following photoinduced energy-transfer from the Ru(II) core, with Ru → Nd energy-transfer being faster than Ru → Yb energy-transfer due to the higher density of energy-accepting states on Nd(III)

    Metal-insulator transition in the one-dimensional Holstein model at half filling

    Full text link
    We study the one-dimensional Holstein model with spin-1/2 electrons at half-filling. Ground state properties are calculated for long chains with great accuracy using the density matrix renormalization group method and extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice fluctuations and that the system remains in a metallic phase with a non-degenerate ground state and power-law electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon frequency small, the system undergoes a transition to an insulating Peierls phase with a two-fold degenerate ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure

    3D MHD Flux Emergence Experiments: Idealized models and coronal interactions

    Full text link
    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealized, in the sense that the internal energy equation only involves the adiabatic, Ohmic and viscous shock heating terms. However, provided the main aim is to investigate the dynamical evolution, this is adequate. Many interesting observational phenomena are explained by these models in a self-consistent manner.Comment: Review article, accepted for publication in Solar Physic

    Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain

    Full text link
    As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical phonons. In view of the anorganic spin-Peierls compound CuGeO3 we consider two different mechanisms of spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the anti-adiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is discussed. Comparing the properties of the ground state and of low-lying excitations with exact diagonalization data for the full quantum spin phonon models, good agreement is found especially in the anti-adiabatic regime.Comment: 9 pages, 7 figures included, submitted to Phys. Rev.

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Calibrating and adjusting expectations in life: A grounded theory on how elderly persons with somatic health problems maintain control and balance in life and optimize well-being

    Get PDF
    Aim: This study aims at exploring the main concern for elderly individuals with somatic health problems and what they do to manage this. Method: In total, 14 individuals (mean&#x200A;=&#x200A;74.2 years; range&#x200A;=&#x200A;68&#x2013;86 years) of both gender including hospitalized and outpatient persons participated in the study. Open interviews were conducted and analyzed according to grounded theory, an inductive theory-generating method. Results: The main concern for the elderly individuals with somatic health problems was identified as their striving to maintain control and balance in life. The analysis ended up in a substantive theory explaining how elderly individuals with somatic disease were calibrating and adjusting their expectations in life in order to adapt to their reduced energy level, health problems, and aging. By adjusting the expectations to their actual abilities, the elderly can maintain a sense of that they still have the control over their lives and create stability. The ongoing adjustment process is facilitated by different strategies and result despite lower expectations in subjective well-being. The facilitating strategies are utilizing the network of important others, enjoying cultural heritage, being occupied with interests, having a mission to fulfill, improving the situation by limiting boundaries and, finally, creating meaning in everyday life. Conclusion: The main concern of the elderly with somatic health problems was to maintain control and balance in life. The emerging theory explains how elderly people with somatic health problems calibrate their expectations of life in order to adjust to reduced energy, health problems, and aging. This process is facilitated by different strategies and result despite lower expectation in subjective well-being

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
    corecore