6,606 research outputs found

    Studies of auroral X-ray imaging from high altitude spacecraft

    Get PDF
    Results of a study of techniques for imaging the aurora from a high altitude satellite at X-ray wavelengths are summarized. The X-ray observations allow the straightforward derivation of the primary auroral X-ray spectrum and can be made at all local times, day and night. Five candidate imaging systems are identified: X-ray telescope, multiple pinhole camera, coded aperture, rastered collimator, and imaging collimator. Examples of each are specified, subject to common weight and size limits which allow them to be intercompared. The imaging ability of each system is tested using a wide variety of sample spectra which are based on previous satellite observations. The study shows that the pinhole camera and coded aperture are both good auroral imaging systems. The two collimated detectors are significantly less sensitive. The X-ray telescope provides better image quality than the other systems in almost all cases, but a limitation to energies below about 4 keV prevents this system from providing the spectra data essential to deriving electron spectra, energy input to the atmosphere, and atmospheric densities and conductivities. The orbit selection requires a tradeoff between spatial resolution and duty cycle

    Comment on "Plasma ionization by annularly bounded helicon waves" [Phys . Plasmas 13, 063501 (2006)]

    Full text link
    The neoclassical calculation of the helicon wave theory contains a fundamental flaw. Use is made of a proportional relationship between the magnetic field and its curl to derive the Helmholtz equation describing helicon wave propagation; however, by the fundamental theorem of Stokes, the curl of the magnetic field must be perpendicular to that portion of the field contributing to the local curl. Reexamination of the equations of motion indicates that only electromagnetic waves propagate through a stationary region of constant pressure in a fully ionized, neutral medium.Comment: 7 pages, 1 figure, to be published in Phys. Plasmas, http://link.aip.org/link/?PHPAEN/16/054701/

    History of the Institute of Polar Studies, 1960-1969

    Get PDF
    Prepared for the Centennial of The Ohio State University

    Variational calculation for the ground state of lithium and the QED corrections for Li-like ions

    Get PDF
    High-precision variational calculations using multiple basis sets in Hylleraas coordinates are presented for the 1s22s 2S state of lithium. The variational bound of -7.478 060 326(10) a.u. for the nonrelativistic energy is in good agreement with our revised experimental value of -7.47 806 034(20) a.u., thereby resolving a long-standing disrepancy. Two-electron calculations of the QED corrections are extended to three-electron systems and compared with other results. The comparison for Li-like ions up to U89+ suggests a simple interpretation for the \u27\u27screening of the Lamb shift\u27\u27 recently calculated by Cheng, Johnson, and Sapirstein [Phys. Rev. Lett. 66, 2960 (1991)]. © 1991 The American Physical Society

    Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    Get PDF
    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again

    Evidence from satellite altimetry for small-scale convection in the mantle

    Get PDF
    Small scale convection can be defined as that part of the mantle circulation in which upwellings and downwellings can occur beneath the lithosphere within the interiors of plates, in contrast to the large scale flow associated with plate motions where upwellings and downwellings occur at ridges and trenches. The two scales of convection will interact so that the form of the small scale convection will depend on how it arises within the large scale flow. Observations based on GEOS-3 and SEASAT altimetry suggest that small scale convection occurs in at least two different ways

    Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point

    Get PDF
    The temperature dependence of the interlayer electrical and thermal resistivity in a layered metal are calculated for Fermi liquid quasiparticles which are scattered inelastically by two-dimensional antiferromagnetic spin fluctuations. Both resistivities have a linear temperature dependence over a broad temperature range. Extrapolations to zero temperature made from this linear-TT range give values that appear to violate the Wiedemann-Franz law. However, below a low-temperature scale, which becomes small close to the critical point, a recovery of this law occurs. Our results describe recent measurements on CeCoIn5_5 near a magnetic field-induced quantum phase transition. Hence, the experiments do not necessarily imply a non-Fermi liquid ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let
    • …
    corecore