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The temperature dependences of the interlayer electrical and thermal resistivity in a layered metal are

calculated for Fermi liquid quasiparticles which are scattered inelastically by two-dimensional antiferro-

magnetic spin fluctuations. Both resistivities have a linear temperature dependence over a broad

temperature range. Extrapolations to zero temperature made from this linear-T range give values that

appear to violate the Wiedemann-Franz law. However, below a low-temperature scale, which becomes

small close to the critical point, a recovery of this law occurs. Our results describe recent measurements on

CeCoIn5 near a magnetic field-induced quantum phase transition. Hence, the experiments do not

necessarily imply a non-Fermi liquid ground state.

DOI: 10.1103/PhysRevLett.101.266403 PACS numbers: 71.27.+a, 71.10.Ay, 72.10.Di

Strongly correlated electron materials exhibit a subtle
competition between a range of ground states including
metallic, insulating, superconducting, antiferromagnetic,
and paramagnetic [1]. Often the metallic states are dis-
tinctly different from the Fermi liquid state characteristic
of elemental metals. Heavy fermion metals are particularly
interesting because they undergo quantum phase transi-
tions, and have non-Fermi liquid properties near the quan-
tum critical point [2,3]. For example, the material family
CeMIn5 (where M ¼ Co, Rh, Ir) can be tuned through
transitions associated with antiferromagnetic or supercon-
ducting order by varying magnetic field, pressure, or
chemical composition. Understanding these systems has
motivated significant theoretical effort [4–6]. In CeCoIn5
at ambient pressure a quantum phase transition between
superconducting and metallic states occurs as the magnetic
field H is tuned through a critical value Hc [7–9]. Recent
transport data [10], from the vicinity of this critical point,
display an extraordinary violation of the fundamental
Wiedemann-Franz (WF) law of metals, and have been
interpreted [11] as a possible signature of a non-Fermi
liquid ground state of CeCoIn5.

In this Letter we consider the WF law near a quantum-
critical point with a goal to understand what observable
WF violation (WFV) reveals about the electronic ground
state. The law states [12] that the electrical resistivity �ðTÞ
is equal to the electronic thermal resistivity [13] wðTÞ.
While it should not hold at finite T, since inelastic scatter-
ing may be important, the WF law must be obeyed by a
Fermi liquid at T ¼ 0 where scattering is due to static
defects [14]. An intriguing aspect of the CeCoIn5 data is
that T ! 0 intercepts of �ðTÞ and wðTÞ, extrapolated from
the lowest observed T of roughly 50 mK, have a finite
difference wðT ! 0Þ � �ðT ! 0Þ that increases as H is
tuned towards Hc. This makes it appear that WFV might
persist down to T ¼ 0, revealing a breakdown of the Fermi
liquid ground state. However, we show that a Fermi liquid
subject to scattering by 2D critical spin fluctuations exhib-

its WFVat finite T, and in T ! 0 extrapolations made from
above a low-temperature scale, while still obeying the WF
law at T ¼ 0. Since a Fermi liquid model captures the
distinctive H and T dependence of the CeCoIn5 data, these
data [10] do not necessarily imply a failure of the Fermi
liquid picture.
We first place WFV within the context of transport

phenomenology in CeCoIn5. The resistivity �ðTÞ is linear
in T below 40 K over a wide range of fieldH and chemical
doping, which could be an indication of quantum-critical
behavior [15] although its precise origin is unclear [16].
For current along the stacked CeIn3 planes, i.e., intralayer
current, linear-T �ðTÞ extends down to 5 K, roughly the
same T below which antiferromagnetic correlations appear
[17,18], before a downturn with decreasing T. Below 1 K,
intralayer �ðTÞ and wðTÞ converge, suggesting that the WF
law is obeyed for intralayer currents at sufficiently low T
(the WF law is also approximately obeyed above 5 K in
intralayer data [16]). Interlayer �ðTÞ is T linear down to the
lowest measurable T with no trace of a downturn. For H
well aboveHc, �ðTÞ and wðTÞ extrapolate to similar values
at T ¼ 0. But as H is decreased towards Hc, the interlayer
thermal resistivitywðTÞ undergoes a rigid upward shift that
results in extrapolated T ! 0 WFV. Since wðT !
0Þ> �ðT ! 0Þ, the WFV cannot be due to heat transport
by neutral carriers [19] but suggests instead that inelastic
scattering contributes to the T ! 0 resistivities.
Since the T ! 0 WFV is less robust than T-linear �ðTÞ,

it can be plausibly attributed to a different mechanism.
WFV might result from scattering by inelastic antiferro-
magnetic spin fluctuations active at low temperatures, with
T-linear �ðTÞ determined by another scattering process
important over a wider temperature range [6]. Taking
into account its experimental Fermi surface [20,21], we
model CeCoIn5 as a quasi-2D metal subject to strong two-
dimensional antiferromagnetic spin fluctuations and study
interlayer transport using a Boltzmann-equation descrip-
tion. The approach aims to understand the low-temperature
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WFV in interlayer transport without addressing other un-
usual properties associated with larger temperature scales.

The relaxation rate of interlayer currents ��1 ¼ ��1
0 þ

~��1 is written as a sum of an isotropic, elastic part ��1
0 and

an anisotropic, inelastic part ~��1 ¼ ~��1ð�; �; TÞ, coming
from critical spin fluctuations. At low-T, in the critical
region, ~��1 will be active only near hot spots, i.e., near a
pair of points on the 2D Fermi surface (of a single layer)
that are connected by a spin-ordering wave vector Q. (To
have finite interlayer current, the Fermi surface must have
some modulation along the interlayer momentum kz. If
spin fluctuations are spatially confined to a layer, and
thus capable of imparting an arbitrary momentum transfer
along kz, then hot ‘‘spots’’ will actually be lines nearly par-
allel to the kz axis on the quasi-2D Fermi surface.) The in-
elastic scattering rate depends on the direction � of elec-
tron momentum within a layer, on energy � and tempera-
ture T. The electrical and thermal resistivity can both be
written, using ��1

0 ðTÞ � ��1ðTÞ and �2ðTÞ � w�1ðTÞ, as

��1
n ðTÞ ¼ ��1

n

Z 1

�1
dxxn

��df0
dx

�Z ��=2

� ��=2

d�
��
�ð�; x; TÞ;

(1)

where ��1ð�; x; TÞ ¼ 1þ �0~�
�1ð�; x; TÞ, ��1

n ¼
��1
0 ð3=�2Þn=2, �0 the zero-temperature interlayer resistiv-

ity and f0ðxÞ ¼ ð1þ exÞ�1 is the Fermi function and vertex
corrections have been omitted (see Ref. [22]). Here, we
assume symmetry-equivalent hot spots spaced by angle ��
with one at � ¼ 0 (this assumption is not crucial, and any
other distribution of distinct hot spots gives similar results).
At T ¼ 0 we have ��1 ¼ ��1

0 and �ð0Þ ¼ wð0Þ ¼ �0, so

the WF law is obeyed at sufficiently low T in this Fermi
liquid model. But since our understanding of T ¼ 0 prop-
erties is based on measurements made at finite temperature,
the effect of ~��1 on T ! 0 extrapolations of the model
should be considered.

The rate of scattering of electrons by spin fluctuations
[15] (the lowest-order electron self-energy with the spin
susceptibility as the boson propagator) is

~��1ð�;x;TÞ¼2g2s
X
k0

f0ðx0Þn0ðx�x0Þ
f0ðxÞ �00

k�k0 ðkBT½x�x0�Þ;

(2)

where the k0 sum is done in the usual way as an integral
over linearized band energy x0 ¼ �k0=kBT and position on
the Fermi surface�0, k0z, with k� k0 dependent only on�,
�0. n0ðxÞ ¼ ðex � 1Þ�1 is a Bose function and �00

qð!Þ is the
imaginary part of the spin susceptibility,[4,25,26]

ðkBT2Þ�1��1
q ð!Þ ¼ �i

!

kBT2

þ!q þ ðkf�Þ�2; (3)

the energy scale kBT2 is the width of the spin-fluctuation
spectral function at typical q (it is proportional to the
parameter T0 of Ref. [4]) and gs a coupling constant. The
factor!qk

2
f ¼ ðq�QÞ2 for jq�Qj � kf, while for jq�

Qj � kf, it is roughly q independent. The spin fluctuations

are assumed two dimensional (the 3D case is discussed
below) so �qð!Þ is independent of qz. Also, we take for the

spin-correlation length [26] at T � T2

ð�q0Þ�2 ¼ rþ cT=T2; (4)

where c is a constant of order unity and r, the tuning
parameter, measures the proximity to the quantum-critical
point. For the magnetic field-tuned quantum-critical point
of interest r depends on H and vanishes at H ¼ HC. In the
expressions above we have ignored logarithmic correc-
tions, associated with the system being in its upper critical
dimension [26].
We discuss three temperature regimes for the spin fluc-

tuations (always remaining close to the critical point where
jrj � 1), which are indicated, respectively, as I, II, and III
in the upper-left inset of Fig. 1. At T � T2 only spin
fluctuations close to an antiferromagnetic Q are thermally
excited so only electrons near hot spots encounter inelastic
scattering. In the low-temperature region I, defined by T �
rT2 � T2 (with r � 0Þ, the correlation length � is deter-
mined by the tuning parameter, r in Eq. (4), with tempera-
ture giving a weak correction. This may be distinguished
from an intermediate temperature regime II, rT2 � T �
T2, in which this situation is reversed. At high temperatures
(III), T > T2, all spin fluctuations are thermally excited so
there are no hot spots and ~��1 is independent of �.
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FIG. 1 (color online). Wiedemann-Franz law violation near
quantum-critical point. Left inset: Phase diagram showing criti-
cal point between a Fermi liquid (FL) and spin density wave
(SW) with tuning parameter r. (I)–(III) denote different tem-
perature regimes discussed in text. Center inset: The thermal
wðTÞ and electrical �ðTÞ resistivity close to the critical point
(r ¼ �0:03, upper curves) and further from it (r ¼ 0:3, lower
curves). Main panel: The difference 	ðTÞ � ½wðTÞ � �ðTÞ�=�0

in resistivities for r ¼ 0:3, 0.1, 0.05, 0.03, 0.01, �0:01, �0:03
from bottom to top. The supposed minimum measurable tem-
perature is Tmin (too large to see SW or FL states for jrj � 1).
The Wiedemann-Franz law 	ð0Þ ¼ 0 would appear to be vio-
lated based on extrapolations made from above Tmin. Right inset:
T ¼ 0 intercepts of 	ðTÞ obtained from extrapolations from T >
Tmin, which increase as r is decreased.
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Another significant temperature scale is that at which the
inelastic scattering rate becomes comparable to ��1

0 (this is

clarified below in the discussion of orbital effects of the
magnetic field). According to Eq. (2), the strength of
inelastic scattering is characterized by a temperature scale
T1 ¼ ð��vfcLkfj sinc j ����1

0 Þð�kBg
2
sq

2
0Þ�1, where � is

the sample volume, cL the c-axis lattice spacing and both
the Fermi velocity vf and c , the angle between velocities

vk and vkþQ, are evaluated at a hot spot.

Low-T regime I.—When T � rT2 we have

�ðTÞ
�0

¼1þ
�

�T2

3rT1T2

�
;

wðTÞ
�0

¼1þ9

5

�
�T2

3rT1T2

�
: (5)

In regime I inelastic scattering becomes comparable to
impurity scattering when T *

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rT2T1

p
. The WF law would

be obeyed by T ¼ 0 extrapolations made from regime I
but, close to the quantum-critical point, this regime will be
limited to inaccessibly low temperatures.

Intermediate T regime II.—For rT2 � T � T2,

�ðTÞ
�0

¼ 1�a0
rT2

T1

þb0
T

T1

;
wðTÞ
�0

¼ 1�a2
rT2

T1

þb2
T

T1

;

(6)

where an,bn are positive numbers with the n ¼ 2 terms

being larger. an are given by an ¼ ð3=�2Þn=2 �R1
�1 dxð�df0=dxÞaðxÞxn and bn is the same with aðxÞ

replaced by bðxÞ where aðxÞ ¼ ��1
R1
�1 dx0½f0ðx0 � xÞ þ

n0ðx0Þ�x0ðx02 þ c2Þ�1, bðxÞ ¼ ��1
R1
�1 dx0½f0ðx0 � xÞ þ

n0ðx0Þ�sgnx0½�2 � atanð c
jx0jÞ�. In regime II the inelastic scat-

tering rate exceeds ��1
0 once T*T1. Extrapolations to T ¼

0 from regime II violate the WF law. This is because the
T¼0 intercepts of �ðTÞ and wðTÞ are not due only to im-
purity scattering, they also include an inelastic contribution
coming from the r-linear term in ��2, Eq. (4). (WFV re-
sults from inelastic electron-electron scattering, as studied
rigorously in the context of disordered metals [27].)

In Fig. 1, 	ðTÞ � ½wðTÞ � �ðTÞ�=�0 is plotted and ex-
trapolated to T ¼ 0 from fits made above an arbitrary Tmin

(supposed to be the lowest measurable T) for several values
of the tuning parameter r. For small jrj, Tmin is in regime II,
so 	ðTÞ is linear in T with an r-independent slope and a
nonzero extrapolated T ¼ 0 intercept that increases as r is
decreased. Extrapolations from above Tmin suggest T ! 0
violation of the WF law. The low-T recovery of the WF
law, which occurs for r � 0, is unobservable. For r < 0,
the model fails when T is decreased to values comparable
to jrjT2 (i.e., it breaks down as spin order is approached)
and says nothing about T ! 0 WF behavior for r < 0.
(Negative r values are allowed in the model [26] within
regime II.)

The results in Fig. 1 capture much of the low-T behavior
observed in the interlayer transport of CeCoIn5. Tanatar
et al [10] measured 	ðTÞ / T with a nonzero intercept
	ðT ! 0Þ. With decreasing field, 	ðTÞ underwent a rigid
upward shift and 	ðT ! 0Þ increased from slightly nega-

tive values at high fields to positive values close to Hc. We
can make a semiquantitative comparison with this data: the
measured 	ðT ! 0Þ decreases by 0.2 as the field goes from
5.3 to 6 T. Using r ¼ H=Hc � 1, taking the constant c ¼ 1,
and associating the measured field dependence of 	ðT !
0Þ near Hc with its predicted linear dependence on r, we
obtain T2=T1 � 10. T1 � 400 mK is estimated indepen-
dently from the slope of 	ðTÞ. So T2 � 4 K, which is
consistent with the value from neutron scattering [18]
and with the temperature below which WFV begins and
linear T resistivity ends in intralayer transport [16].
T2=T1 ¼ 10 and c ¼ 1 are also used in Fig. 1 and the plots
may be compared to those [28] of data in Ref. [10]. The r
values in Fig. 1 correspond to H ranging from 0.2 T below
Hc to 3.5 Tabove it, roughly consistent with a range used to
fit the T dependence of specific heat with the same model
[9]. Negative r values in CeCoIn5 would imply that the
T ¼ 0 critical field for the magnetic-paramagnetic transi-
tionHc is larger than the superconducting transition field at
the lowest measured temperatures. In the r * 0 curves of
Fig. 1, extrapolations made from T as low as 0:01T2 �
40 mK would indicate WF violation, missing its low-T
recovery.
High-T regime III.—If we crudely extend the model to

T > T2, then it predicts isotropic, T-linear scattering. [This
assumes that �ð! ¼ 0Þ does not decrease as fast at 1=T so
�00ð!Þ, Eq. (3), restricts ! integrals to ! � kBT, which
should be a reasonable approximation for T * T2.] We
then have �ðTÞ ¼ �0ð1þ a00T=T1Þ, and 	ðTÞ �
T2
2=ð�2TT1Þ where a00 � 1 is a constant.

Figure 2 is an approximate plot of 	ðTÞ over a wide
temperature range: 	ðTÞ increases with T before peaking at
a temperature Tp and falling off like 1=T. This behavior is

analogous to what is seen for electron scattering from
phonons [14] (with T2 playing the role of the Debye
temperature) where WFV is small both at low-T, where
few phonons are excited, and high-T, where the phonon
energy is small compared to thermal electron energy so
scattering is elastic. As r is decreased, the peak in 	ðTÞ
narrows and its position Tp shifts to lower T but Tp does

not tend towards zero. Rather, Tp=T2 � ðT1=T2Þ1=2 at r ¼
0. Similar behavior is seen in 	ðTÞ data for intralayer
transport [10,16] in CeCoIn5, although the intralayer re-
sistivities are not T linear over the temperature range in
which the peak occurs.
The above assumed 2D fluctuations as suggested by

NMR data on CeCoIn5 [17]. Recent neutron data [18]
see only weak spin anisotropy and a dimensional crossover
below 1 K (3D at low T) has been reported [29]. For 3D
fluctuations (assuming hot spots still exist), we write
!qq

2
0 ¼ ðqk �QkÞ2 þ 
2ðqz �QzÞ2 where qk is in the

layer and 
2 a measure of anisotropy, and take [26]

ð�q0Þ�2 ¼ 1þ cðT=T2Þ3=2. We find �ðTÞ=�0 ¼ a3D½T5=4=

ðT1T
1=4
2 Þ � ðr=2cÞT�1=4=ðT1T

�1=4
2 Þ� andwðTÞ¼ ð9=5Þ�ðTÞ

with a3D � 1:05=ð
c1=2Þ. So resistivities vary as T5=4 and

the field-dependent term is proportional to T�1=4. A 3D-2D
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crossover would be difficult to observe in transport given
the slight change in temperature power laws but careful
analysis of the T-dependent WFV could reveal the dimen-
sionality of the scatterer.

Quantum oscillations are seen [20,30] in CeCoIn5 for
magnetic fields H as low as 3Hc, so orbital effects of
the field might be important near Hc. We have studied
these using a Boltzmann equation for interlayer transport
with a field along kz. At T � T2, near Hc, hot-spot scat-
tering is important since it reduces electron density in cold
regions that follow hot spots, in the sense of cyclotron
motion. One can solve the Boltzmann equation in cold
regions, treating the density at the hot spot as a boundary
condition obtained by solving the equation within the
narrow range, say �	�=2<�< 	�=2 where ~��1ð�Þ
operates. Equations (5) and (6) are valid if the cyclotron

frequency !C � eHvf=kf satisfies !C >
R	�=2
�	�=2 ~�

�1ð�Þ.
This is why T1, the temperature at which the �-averaged
~��1ð�Þ equals ��1

0 , is a relevant scale. The much lower T at

which ~��1ð0Þ ¼ ��1
0 should not matter near Hc. The field

helps prevent the onset of an anisotropic electron distribu-
tion [15]) as T is increased.

In summary, the field-tuned Wiedemann-Franz violation
seen in extrapolated linear intercepts of interlayer resistiv-
ity in CeCoIn5 is explained within a Fermi liquid picture in
which two-dimensional antiferromagnetic spin fluctua-
tions are the main source of inelastic scattering. This
picture naturally produces multiple temperature scales as-
sociated with transport and shows how these scales vary
near the critical point.
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FIG. 2 (color online). Qualitative behavior of 	ðTÞ over a wide
T range. Main Panel: Solid curves at low T are plots of 	ðTÞ, as
shown in Fig. 1, for decreasing r between r ¼ 1 and r ¼ 0 from
bottom to top. The single solid curve at high T is the
(r-independent) approximate result, and dashed curves are ex-
trapolations into the crossover regime. As r is decreased, the
peak in 	ðTÞ narrows and shifts to lower T but the peak-
temperature Tp remains finite at r ¼ 0. Inset: The r-dependent

temperature scales associated with 	ðTÞ. The peak temperature
Tp, lies between the Fermi liquid temperature TFL and spin-

fluctuation temperature T2.
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