2,594 research outputs found

    Unaccustomed eccentric contractions impair plasma K+ regulation in the absence of changes in muscle Na+,K+-ATPase content

    Get PDF
    The Na+,K+-ATPase (NKA) plays a fundamental role in the regulation of skeletal muscle membrane Na+ and K+ gradients, excitability and fatigue during repeated intense contractions. Many studies have investigated the effects of acute concentric exercise on K+ regulation and skeletal muscle NKA, but almost nothing is known about the effects of repeated eccentric contractions. We therefore investigated the effects of unaccustomed maximal eccentric knee extensor contractions on K+ regulation during exercise, peak knee extensor muscle torque, and vastus lateralis muscle NKA content and 3-O-MFPase activity. Torque measurements, muscle biopsies, and venous blood samples were taken before, during and up to 7 days following the contractions in six healthy adults. Eccentric contractions reduced peak isometric muscle torque immediately post-exercise by 26±11% and serum creatine kinase concentration peaked 24 h post-exercise at 339±90 IU/L. During eccentric contractions, plasma [K+] rose during Set 1 and remained elevated at ∼4.9 mM during sets 4-10; this was despite a decline in work output by Set 4, which fell by 18.9% at set 10. The rise in plasma [K+] x work(-1) ratio was elevated over Set 2 from Set 4- Set 10. Eccentric contractions had no effect on muscle NKA content or maximal in-vitro 3-O-MFPase activity immediately post- or up to 7 d post-exercise. The sustained elevation in plasma [K+] despite a decrease in work performed by the knee extensor muscles suggests an impairment in K+ regulation during maximal eccentric contractions, possibly due to increased plasma membrane permeability or to excitation-contraction uncoupling

    Antimicrobial Photodynamic Therapy – a promising alternative to treatment of prosthetic joint infections?

    Get PDF
    Periprosthetic joint infection (PJI) is associated with high patient morbidity and a large financial cost. This study investigated Photodynamic Therapy (PDT) as a means of eradicating bacteria that cause PJI, using a laser with a 665-nm wavelength and methylene blue (MB) as the photosensitizer. The effectiveness of MB concentration on the growth inhibition of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Acinetobacter baumannii was investigated. The effect of laser dose was also investigated and the optimized PDT method was used to investigate its bactericidal effect on species within planktonic culture and following the formation of a biofilm on polished titanium and hydroxyapatite coated titanium discs. Results showed that Staphylococci were eradicated at the lowest concentration of 0.1 mM methylene blue (MB). With P. aeruginosa and A. baumannii, increasing the MB concentration improved the bactericidal effect. When the laser dose was increased, results showed that the higher the power of the laser the more bacteria were eradicated with a laser power ≥ 35 J/cm2 and an irradiance of 35 mW/cm2, eradicating all S. epidermidis. The optimized PDT method had a significant bactericidal effect against planktonic MRSA and S. epidermidis compared to MB alone, laser alone, or control (no treatment). When biofilms were formed, PDT treatment had a significantly higher bactericidal effect than MB alone and laser alone for all species of bacteria investigated on the polished disc surfaces. P. aeruginosa grown in a biofilm was shown to be less sensitive to PDT when compared to Staphylococci, and a HA-coated surface reduced the effectiveness of PDT. This study demonstrated that PDT is effective for killing bacteria that cause PJI

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    Quantifying single nucleotide variant detection sensitivity in exome sequencing

    Get PDF
    BACKGROUND: The targeted capture and sequencing of genomic regions has rapidly demonstrated its utility in genetic studies. Inherent in this technology is considerable heterogeneity of target coverage and this is expected to systematically impact our sensitivity to detect genuine polymorphisms. To fully interpret the polymorphisms identified in a genetic study it is often essential to both detect polymorphisms and to understand where and with what probability real polymorphisms may have been missed. RESULTS: Using down-sampling of 30 deeply sequenced exomes and a set of gold-standard single nucleotide variant (SNV) genotype calls for each sample, we developed an empirical model relating the read depth at a polymorphic site to the probability of calling the correct genotype at that site. We find that measured sensitivity in SNV detection is substantially worse than that predicted from the naive expectation of sampling from a binomial. This calibrated model allows us to produce single nucleotide resolution SNV sensitivity estimates which can be merged to give summary sensitivity measures for any arbitrary partition of the target sequences (nucleotide, exon, gene, pathway, exome). These metrics are directly comparable between platforms and can be combined between samples to give “power estimates” for an entire study. We estimate a local read depth of 13X is required to detect the alleles and genotype of a heterozygous SNV 95% of the time, but only 3X for a homozygous SNV. At a mean on-target read depth of 20X, commonly used for rare disease exome sequencing studies, we predict 5–15% of heterozygous and 1–4% of homozygous SNVs in the targeted regions will be missed. CONCLUSIONS: Non-reference alleles in the heterozygote state have a high chance of being missed when commonly applied read coverage thresholds are used despite the widely held assumption that there is good polymorphism detection at these coverage levels. Such alleles are likely to be of functional importance in population based studies of rare diseases, somatic mutations in cancer and explaining the “missing heritability” of quantitative traits

    Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    Get PDF
    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis

    SAMQA: error classification and validation of high-throughput sequenced read data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advances in high-throughput sequencing technologies and growth in data sizes has highlighted the need for scalable tools to perform quality assurance testing. These tests are necessary to ensure that data is of a minimum necessary standard for use in downstream analysis. In this paper we present the SAMQA tool to rapidly and robustly identify errors in population-scale sequence data.</p> <p>Results</p> <p>SAMQA has been used on samples from three separate sets of cancer genome data from The Cancer Genome Atlas (TCGA) project. Using technical standards provided by the SAM specification and biological standards defined by researchers, we have classified errors in these sequence data sets relative to individual reads within a sample. Due to an observed linearithmic speedup through the use of a high-performance computing (HPC) framework for the majority of tasks, poor quality data was identified prior to secondary analysis in significantly less time on the HPC framework than the same data run using alternative parallelization strategies on a single server.</p> <p>Conclusions</p> <p>The SAMQA toolset validates a minimum set of data quality standards across whole-genome and exome sequences. It is tuned to run on a high-performance computational framework, enabling QA across hundreds gigabytes of samples regardless of coverage or sample type.</p

    Moral enhancement: do means matter morally?

    Get PDF
    One of the reasons why moral enhancement may be controversial, is because the advantages of moral enhancement may fall upon society rather than on those who are enhanced. If directed at individuals with certain counter-moral traits it may have direct societal benefits by lowering immoral behavior and increasing public safety, but it is not directly clear if this also benefits the individual in question. In this paper, we will discuss what we consider to be moral enhancement, how different means may be used to achieve it and whether the means we employ to reach moral enhancement matter morally. Are certain means to achieve moral enhancement wrong in themselves? Are certain means to achieve moral enhancement better than others, and if so, why? More specifically, we will investigate whether the difference between direct and indirect moral enhancement matters morally. Is it the case that indirect means are morally preferable to direct means of moral enhancement and can we indeed pinpoint relevant intrinsic, moral differences between both? We argue that the distinction between direct and indirect means is indeed morally relevant, but only insofar as it tracks an underlying distinction between active and passive interventions. Although passive interventions can be ethical provided specific safeguards are put in place, these interventions exhibit a greater potential to compromise autonomy and disrupt identity
    corecore