7,741 research outputs found

    Mapping the Evolution of Optically-Generated Rotational Wavepackets in a Room Temperature Ensemble of D2_2

    Full text link
    A coherent superposition of rotational states in D2_2 has been excited by nonresonant ultrafast (12 femtosecond) intense (2 Ɨ\times 1014^{14} Wcmāˆ’2^{-2}) 800 nm laser pulses leading to impulsive dynamic alignment. Field-free evolution of this rotational wavepacket has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, Īø\theta. The detailed fractional revivals of the neutral D2_2 wavepacket as a function of Īø\theta and evolution time have been observed and modelled theoretically.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. A. Full reference to follow.

    Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain

    Get PDF
    The ambitious Net Zero aspirations of Great Britain (GB) require massive and rapid developments of Variable Renewable Energy (VRE) technologies. GB possesses substantial resources for these technologies, but questions remain about which VRE should be exploited where. This study develops a transferable methodology to explore the trade-offs between landscape impact, land use competition and resource quality for onshore wind as well as ground- and roof-mounted photovoltaic (PV) systems for the first time across GB. These trade-offs constrain the technical and economic potentials for these technologies at the Local Authority level. Our approach combines techno-economic and geospatial analyses with crowd-sourced ā€˜scenicnessā€™ data to quantify landscape aesthetics. Despite strong correlations between scenicness and planning application outcomes for onshore wind, no such relationship exists for ground-mounted PV. The innovative method for rooftop-PV assessment combines bottom-up analysis of four cities with a top-down approach at the national level. The results show large technical potentials that are strongly constrained by both landscape and land use aspects. This equates to about 1324 TWh of onshore wind, 153 TWh of rooftop PV and 1200ā€“7093 TWh ground-mounted PV, depending on scenario. We conclude with five recommendations that focus around aligning energy and planning policies for VRE technologies across multiple scales and governance arenas

    Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain

    Get PDF
    The ambitious Net Zero aspirations of Great Britain (GB) require massive and rapid developments of Variable Renewable Energy (VRE) technologies. GB possesses substantial resources for these technologies, but questions remain about which VRE should be exploited where. This study explores the trade-offs between landscape impact, land use competition and resource quality for onshore wind as well as ground- and roof-mounted photovoltaic (PV) systems for GB. These trade-offs constrain the technical and economic potentials for these technologies at the Local Authority level. Our approach combines techno-economic and geospatial analyses with crowd-sourced scenicness data to quantify landscape aesthetics. Despite strong correlations between scenicness and planning application outcomes for onshore wind, no such relationship exists for ground-mounted PV. The innovative method for rooftop-PV assessment combines bottom-up analysis of four cities with a top-down approach at the national level. The results show large technical potentials that are strongly constrained by both landscape and land use aspects. This equates to about 1324 TWh of onshore wind, 153 TWh of rooftop PV and 1200-7093 TWh ground-mounted PV, depending on scenario. We conclude with five recommendations that focus around aligning energy and planning policies for VRE technologies across multiple scales and governance arenas

    Radiating electron source generation in ultraintense laser-foil interactions

    Get PDF
    A radiating electron source is shown to be created by a laser pulse (with intensity of 10^23 W/cm^2 and duration equal to 30 fs) interacting with a near-critical density plasma. It is shown that the back radiation reaction resulting from high energy synchrotron radiation tends to counteract the action of the ponderomotive force. This enhances the collective dynamics of the radiating electrons in the highest field areas, resulting in the production of a compact radiation source (containing 80% of the synchrotron radiation emission), with an energy on the order of tens of MeV over the laser pulse duration. These phenomena are investigated using a QED-particle-in-cell code, and compared with a kinetic model accounting for the radiation reaction force in the electron distribution function. The results shed new light on electron-photon sources at ultra-high laser intensities and could be tested on future laser facilities

    Quantum Chessboards in the Deuterium Molecular Ion

    Get PDF
    We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard' pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)Comment: 12 pages, 5 figure

    The Pothole Hydrology-Linked Systems Simulator (PHyLiSS)ā€”Development and Application of a Systems Model for Prairie-Pothole Wetlands

    Get PDF
    The North American Prairie Pothole Region covers about 770,000 square kilometers of the United States and Canada (including parts of 5 States and 3 provinces: North Dakota, South Dakota, Montana, Minnesota, Iowa, Saskatchewan, Manitoba, and Alberta). The Laurentide Ice Sheet shaped the landscape of the region about 12,000 to 14,000 years ago. The retreat of the ice sheet left behind low-permeability glacial till and a landscape dotted with millions of depressions known today as prairie potholes. The wetlands that subsequently formed in these depressions, prairie-pothole wetlands, provide critical migratory-bird habitat and support dynamic aquatic communities. Extensive grasslands and productive agricultural systems surround these wetland ecosystems. In prairie-pothole wetlands, the compositions of plant, invertebrate, and vertebrate communities are highly dependent on hydrogeochemical conditions. Regional climate shifts between wet and dry periods affect the length of time that wetlands contain ponded surface water and the chemistry of that ponded water. Land-use change can exacerbate or reduce the effects of climate on wetland hydrology and water chemistry. A mechanistic understanding of the relation among climate, land use, hydrology, chemistry, and biota in prairie-pothole wetlands is needed to better understand the complex, and often interacting, effects of climate and land use on prairie-pothole wetland systems and to facilitate climate and land-use change adaptation efforts. The Pothole Hydrology-Linked Systems Simulator (PHyLiSS) model was developed to address this need. The model simulates water-surface elevation dynamics in prairie-pothole wetlands and quantifies changes in salinity. The PHyLiSS model is unique among other wetland models because it accommodates differing sizes and morphometries of wetland basins, is not dependent on a priori designations of wetland class, and allows for functional changes associated with dynamic shifts in ecohydrological states. The PHyLiSS model also has the capability to simulate wetland salinity, and potential future iterations will also simulate the effects of changing hydrology and geochemical conditions on biota. This report documents the development of the hydrological and geochemical components of the PHyLiSS model and provides example applications

    Scenicness assessment of onshore wind sites with geotagged photographs and impacts on approval and cost-efficiency

    Get PDF
    Funding Information: We gratefully acknowledge the contributions of D. Schlund, who carried out some of the wind analysis whilst a Student Assistant at KIT, as well as C. Moutard, on whose Masterā€™s Thesis at DTU this article builds (Assessing the ā€˜acceptableā€™ onshore wind potential in the UK, 2019, https://findit.dtu.dk/en/catalog/2451029061). M. Dā€™Andrea, K. Paidis and T. Jaenicke supported the preparation of early versions of the manuscript whilst Student Assistants at DTU. I.M. gratefully acknowledges financial support from Kraks Fond, Copenhagen ([email protected]). T.P. and H.S.M. are grateful for support from The Alan Turing Institute under the EPSRC grant EP/N510129/1 (including awards TU/B/000006 and TU/B/000008).Peer reviewedPostprin

    Studentsā€™ navigation of the uncharted territories of academic writing

    Get PDF
    Many students enter tertiary education unfamiliar with the ā€˜norms and conventionsā€™ of their disciplines. Research into academic literacies has shown that in order to succeed in their studies, students are expected to conform to these norms and conventions, which are often unrecognized or seen as ā€˜common senseā€™ by lecturers. Students have to develop their own ā€˜mapā€™ of their programmeā€™s expectations in order to make sense of the seemingly mysterious practices they are expected to take on. This study, undertaken at a University of Technology in South Africa, details studentsā€™ perceptions of their writing difficulties and their attempts to navigate their way through various writing tasks. The findings reveal that students experience a range of difficulties and that the students often feel unsupported in their travails with academic writing.Department of HE and Training approved lis

    A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    Get PDF
    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type

    Topological effects in ring polymers: A computer simulation study

    Full text link
    Unconcatenated, unknotted polymer rings in the melt are subject to strong interactions with neighboring chains due to the presence of topological constraints. We study this by computer simulation using the bond-fluctuation algorithm for chains with up to N=512 statistical segments at a volume fraction \Phi=0.5 and show that rings in the melt are more compact than gaussian chains. A careful finite size analysis of the average ring size R \propto N^{\nu} yields an exponent \nu \approx 0.39 \pm 0.03 in agreement with a Flory-like argument for the topologica interactions. We show (using the same algorithm) that the dynamics of molten rings is similar to that of linear chains of the same mass, confirming recent experimental findings. The diffusion constant varies effectively as D_{N} \propto N^{-1.22(3) and is slightly higher than that of corresponding linear chains. For the ring sizes considered (up to 256 statistical segments) we find only one characteristic time scale \tau_{ee} \propto N^{2.0(2); this is shown by the collapse of several mean-square displacements and correlation functions onto corresponding master curves. Because of the shrunken state of the chain, this scaling is not compatible with simple Rouse motion. It applies for all sizes of ring studied and no sign of a crossover to any entangled regime is found.Comment: 20 Pages,11 eps figures, Late
    • ā€¦
    corecore