68 research outputs found

    A Reflection on Teachers\u27 Experience as E-learners

    Get PDF
    This chapter explores the insights gained by a group of teachers from their lived experience as eLearners participating in a blended module on Designing eLearning. An understanding of the student perspective on online learning was obtained but we were also able to reflect on our participation in the module on the basis of our other roles; as teachers and potential eTutors and as course designers. As a result, important considerations were identified for the design and facilitation of online courses. These include; the support provided to online learners, particularly over the first few weeks, appropriate assessment methods, facilitation of online collaboration, access to the Internet, time management and contextualising and scaffolding learning activities. Some issues relating to implementation of effective eLearning in Higher Education Institutions were also considered. Our lived experience as eLearners was invaluable to our development as eTutors and module designers and this approach is strongly recommended to achieve effective learning on how to be an effective online tutor and facilitator and how to design and develop online programmes and activities that make full use of the strengths of online learning

    Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry

    Get PDF
    Paper spray ionization coupled to a high resolution tandem mass spectrometer (a quadrupole orbitrap) was used to identify and quantitate chemical warfare agent (CWA) simulants and their hydrolysis products in blood and urine. Three CWA simulants, dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP), and their isotopically labeled standards were analyzed in human whole blood and urine. Calibration curves were generated and tested with continuing calibration verification standards. Limits of detection for these three compounds were in the low ng mL−1 range for the direct analysis of both blood and urine samples. Five CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), cyclohexyl methylphosphonic acid (CHMPA), and pinacolyl methylphosphonic acid (PinMPA), were also analyzed. Calibration curves were generated in both positive and negative ion modes. Limits of detection in the negative ion mode ranged from 0.36 ng mL−1 to 1.25 ng mL−1 in both blood and urine for the hydrolysis products. These levels were well below those found in victims of the Tokyo subway attack of 2 to 135 ng mL−1. Improved stability and robustness of the paper spray technique in the negative ion mode was achieved by the addition of chlorinated solvents. These applications demonstrate that paper spray mass spectrometry (PS-MS) can be used for rapid, sample preparation-free detection of chemical warfare agents and their hydrolysis products at physiologically relevant concentrations in biological samples

    Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis

    Get PDF
    More efficient therapies that target multiple molecular mechanisms are needed for the treatment of incurable bone metastases. Halofuginone is a plant alkaloid-derivative with antiangiogenic and antiproliferative effects. Here we demonstrate that halofuginone is an effective therapy for the treatment of bone metastases, through multiple actions that include inhibition of TGFβ and BMP-signaling., Halofuginone blocked TGF-β-signaling in MDA-MB-231 and PC3 cells showed by inhibition of TGF-β–induced Smad-reporter, phosphorylation of Smad-proteins, and expression of TGF-β-regulated metastatic genes. Halofuginone increased inhibitory Smad7-mRNA and reduced TGF-β-receptor II protein. Proline supplementation but not Smad7-knockdown reversed halofuginone-inhibition of TGF-β-signaling. Halofuginone also decreased BMP-signaling. Treatment of MDA-MB-231 and PC3 cells with halofuginone reduced the BMP-Smad-reporter (BRE)4, Smad1/5/8-phosphorylation and mRNA of the BMP-regulated gene Id-1. Halofuginone decreased immunostaining of phospho-Smad2/3 and phospho-Smad1/5/8 in cancer cells in vivo., Furthermore, halofuginone decreased tumor-take and growth of orthotopic-tumors. Mice with breast or prostate bone metastases treated with halofuginone had significantly less osteolysis than control mice. Combined treatment with halofuginone and zoledronic-acid significantly reduced osteolytic area more than either treatment alone. Thus, halofuginone reduces breast and prostate cancer bone metastases in mice and combined with treatment currently approved by the FDA is an effective treatment for this devastating complication of breast and prostate-cancer

    Tumor-expressed adrenomedullin accelerates breast cancer bone metastasis

    Get PDF
    INTRODUCTION: Adrenomedullin (AM) is secreted by breast cancer cells and increased by hypoxia. It is a multifunctional peptide that stimulates angiogenesis and proliferation. The peptide is also a potent paracrine stimulator of osteoblasts and bone formation, suggesting a role in skeletal metastases-a major site of treatment-refractory tumor growth in patients with advanced disease. METHODS: The role of adrenomedullin in bone metastases was tested by stable overexpression in MDA-MB-231 breast cancer cells, which cause osteolytic bone metastases in a standard animal model. Cells with fivefold increased expression of AM were characterized in vitro, inoculated into immunodeficient mice and compared for their ability to form bone metastases versus control subclones. Bone destruction was monitored by X-ray, and tumor burden and osteoclast numbers were determined by quantitative histomorphometry. The effects of AM overexpression on tumor growth and angiogenesis in the mammary fat pad were determined. The effects of AM peptide on osteoclast-like multinucleated cell formation were tested in vitro. A small-molecule AM antagonist was tested for its effects on AM-stimulated ex vivo bone cell cultures and co-cultures with tumor cells, where responses of tumor and bone were distinguished by species-specific real-time PCR. RESULTS: Overexpression of AM mRNA did not alter cell proliferation in vitro, expression of tumor-secreted factors or cell cycle progression. AM-overexpressing cells caused osteolytic bone metastases to develop more rapidly, which was accompanied by decreased survival. In the mammary fat pad, tumors grew more rapidly with unchanged blood vessel formation. Tumor growth in the bone was also more rapid, and osteoclasts were increased. AM peptide potently stimulated bone cultures ex vivo; responses that were blocked by small-molecule adrenomedullin antagonists in the absence of cellular toxicity. Antagonist treatment dramatically suppressed tumor growth in bone and decreased markers of osteoclast activity. CONCLUSIONS: The results identify AM as a target for therapeutic intervention against bone metastases. Adrenomedullin potentiates osteolytic responses in bone to metastatic breast cancer cells. Small-molecule antagonists can effectively block bone-mediated responses to tumor-secreted adrenomedullin, and such agents warrant development for testing in vivo

    Halofuginone inhibits the establishment and progression of melanoma bone metastases

    Get PDF
    Transforming growth factor (TGF-β) derived from bone fuels melanoma bone metastases by inducing tumor secretion of pro-metastatic factors that act on bone cells to change the skeletal microenvironment. Halofuginone is a plant alkaloid derivative that blocks TGF-β signaling with antiangiogenic and antiproliferative properties. Here, we demonstrate for the first time that halofuginone therapy decreases development and progression of bone metastasis caused by melanoma cells through inhibition of TGF-β signaling. Halofuginone treatment of human melanoma cells inhibited cell proliferation, phosphorylation of SMAD proteins in response to TGF-β, and TGF-β-induced SMAD-driven transcription. In addition, halofuginone reduced expression of TGF-β target genes that enhance bone metastases, including PTHrP, CTGF, CXCR4, and IL11. Also, cell apoptosis was increased in response to halofuginone. In nude mice inoculated with 1205Lu melanoma cells, a preventive protocol with halofuginone inhibited bone metastasis. The beneficial effects of halofuginone treatment were comparable to those observed with other anti-TGF-β strategies, including systemic administration of SD208, a small molecule inhibitor of TGF-β receptor I kinase, or forced overexpression of Smad7, a negative regulator of TGF-β signaling. Furthermore, mice with established bone metastases treated with halofuginone had significantly less osteolysis than mice receiving placebo assessed by radiographys. Thus, halofuginone is also effective in reducing the progression of melanoma bone metastases. Moreover, halofuginone treatment reduced melanoma metastasis to the brain, showing the potential of this novel treatment against cancer metastasis

    Manifestation and parental assessment of children’s cancer pain at home: an exploratory mixed methods study

    Get PDF
    Aims and objectives To describe pain manifestation in children with cancer at home and understand how parents assess this pain. Background Pain is experienced by children with cancer throughout their cancer journey. Short‐term, and into survivorship, pain has negative physical and psychological consequences. Changes in treatment location mean children with cancer spend more time at home. Little is known about pain experienced by children at home or how parents assess this pain. Design A mixed methods convergent parallel study was reported using STROBE. Method Parents of children with cancer on active treatment were recruited from one tertiary cancer centre. Parental attitudes towards pain expression were assessed using surveys. Parents recorded their child’s pain manifestation in pain diaries kept for one month. Interviews captured a deeper understanding of pain manifestation and how parents assess this pain at home. Integration occurred after each data collection method was analysed separately. Results Predominantly children were not in pain at home. However, most children experienced at least one episode of problematic pain over the pain diary period. Surveys showed parents held misconceptions regarding children’s pain expression. Interviews diverge from surveys and suggest parents used a range of information sources to assess pain. Conclusion Children with cancer may differ from one another in the manifestation of pain at home resulting in multiple pain trajectories. Parents of children with cancer are able to adequately assess their child’s pain using information from multiple source

    Pharmacologic Inhibition of the TGF-β Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone

    Get PDF
    During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-β has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-β signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-β signaling on bone remain unclear. To examine the role of TGF-β in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-β type I receptor (TβRI) kinase on bone mass, architecture and material properties. Inhibition of TβRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TβRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TβRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TβRI inhibitors may be effective in treating conditions of skeletal fragility
    corecore