12 research outputs found

    The influence of photoperiod on the reproductive physiology of the greater red musk shrew: Crocidura flavescens

    Get PDF
    Photoperiodism involves the use of both absolute measures of day length and the direction in which day length is changing as a cue for regulating seasonal changes in physiology and behaviour so that birth and lactation coincide with optimal resource availability, increasing offspring survival. Induced ovulation and opportunistic breeding is often found in species that are predominantly solitary and territorial. In this study, the photoperiodic reproductive responses of male greater red musk shrews (Crocidura flavescens (I. Geoffroy Saint-Hilaire, 1827)) were investigated in the laboratory. The presence of spermatozoa regardless of the light cycle, suggest that although the shrews are photoresponsive, they may be capable of breeding throughout the year. Significantly greater testicular volume and eminiferous tubule diameter following exposure to a short day-light cycle suggests that these animals may have breeding peaks that correspond to short days. The presence of epidermal spines on the penis indicates that the shrew is likely also an induced ovulator. Flexible breeding patterns combined with induced ovulation affords this solitary species the greatest chance of reproductive success

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Effects of anthropogenic disturbance on bird diversity in Ethiopian montane forests

    Get PDF
    The Afromontane forests of Ethiopia are global biodiversity hotspots, known for their high biological diversity and endemism. However, conservation of these areas is challenging due to increasing human threats, including encroachment of agriculture and settlements, overgrazing of livestock, and selective logging. We examined the effects of forest disturbances on birds, and highlights the potential conservation value of unprotected tropical montane forests for birds in the dry evergreen Afromontane forests of the Bale Mountains, Ethiopia. We sampled birds across 2 yr in both protected forests (characterized by low levels of cultivation, overgrazing, and logging) and unprotected forests (higher levels of disturbance). Using functional traits of birds related to habitat type, diet, and foraging stratum, we characterized the differences between protected and unprotected forests in terms of avian species richness, abundance, and assemblage composition. Overall, species richness was 27% higher and bird abundance was 19% higher in unprotected forests. In contrast, species richness and abundance of forest specialists and canopy foragers were significantly higher in protected forests. These findings suggest that unprotected, disturbed tropical montane forests in Ethiopia help to achieve conservation aims in an area recognized for its global biodiversity importance. At the same time, intact forest ecosystems need continued protection to maximize functional heterogeneity associated with specialist tropical forest taxa

    Efficient Evaporative Cooling and Pronounced Heat Tolerance in an Eagle-Owl, a Thick-Knee and a Sandgrouse

    Get PDF
    Avian evaporative cooling and the maintenance of body temperature (Tb) below lethal limits during heat exposure has received more attention in small species compared to larger-bodied taxa. Here, we examined thermoregulation at air temperatures (Tair) approaching and exceeding normothermic Tb in three larger birds that use gular flutter, thought to provide the basis for pronounced evaporative cooling capacity and heat tolerance. We quantified Tb, evaporative water loss (EWL) and resting metabolic rate (RMR) in the ∼170-g Namaqua sandgrouse (Pterocles namaqua), ∼430-g spotted thick-knee (Burhinus capensis) and ∼670-g spotted eagle-owl (Bubo africanus), using flow-through respirometry and a stepped Tair profile with very low chamber humidities. All three species tolerated Tair of 56–60°C before the onset of severe hyperthermia, with maximum Tb of 43.2°C, 44.3°C, and 44.2°C in sandgrouse, thick-knees and eagle-owls, respectively. Evaporative scope (i.e., maximum EWL/minimum thermoneutral EWL) was 7.4 in sandgrouse, 12.9 in thick-knees and 7.8 in eagle-owls. The relationship between RMR and Tair varied substantially among species: whereas thick-knees and eagle-owls showed clear upper critical limits of thermoneutrality above which RMR increased rapidly and linearly, sandgrouse did not. Maximum evaporative heat loss/metabolic heat production ranged from 2.8 (eagle-owls) to 5.5 (sandgrouse), the latter the highest avian value yet reported. Our data reveal some larger species with gular flutter possess pronounced evaporative cooling capacity and heat tolerance and, when taken together with published data, show thermoregulatory performance varies widely among species larger than 250 g. Our data for Namaqua sandgrouse reveal unexpectedly pronounced variation in the metabolic costs of evaporative cooling within the genus Pterocles

    Efficient Evaporative Cooling and Pronounced Heat Tolerance in an Eagle-Owl, a Thick-Knee and a Sandgrouse

    No full text
    Avian evaporative cooling and the maintenance of body temperature (Tb) below lethal limits during heat exposure has received more attention in small species compared to larger-bodied taxa. Here, we examined thermoregulation at air temperatures (Tair) approaching and exceeding normothermic Tb in three larger birds that use gular flutter, thought to provide the basis for pronounced evaporative cooling capacity and heat tolerance. We quantified Tb, evaporative water loss (EWL) and resting metabolic rate (RMR) in the ∼170-g Namaqua sandgrouse (Pterocles namaqua), ∼430-g spotted thick-knee (Burhinus capensis) and ∼670-g spotted eagle-owl (Bubo africanus), using flow-through respirometry and a stepped Tair profile with very low chamber humidities. All three species tolerated Tair of 56–60°C before the onset of severe hyperthermia, with maximum Tb of 43.2°C, 44.3°C, and 44.2°C in sandgrouse, thick-knees and eagle-owls, respectively. Evaporative scope (i.e., maximum EWL/minimum thermoneutral EWL) was 7.4 in sandgrouse, 12.9 in thick-knees and 7.8 in eagle-owls. The relationship between RMR and Tair varied substantially among species: whereas thick-knees and eagle-owls showed clear upper critical limits of thermoneutrality above which RMR increased rapidly and linearly, sandgrouse did not. Maximum evaporative heat loss/metabolic heat production ranged from 2.8 (eagle-owls) to 5.5 (sandgrouse), the latter the highest avian value yet reported. Our data reveal some larger species with gular flutter possess pronounced evaporative cooling capacity and heat tolerance and, when taken together with published data, show thermoregulatory performance varies widely among species larger than 250 g. Our data for Namaqua sandgrouse reveal unexpectedly pronounced variation in the metabolic costs of evaporative cooling within the genus Pterocles

    Body temperature responses of Great Tits Parus major to handling in the cold

    No full text
    Animals typically respond to stressful stimuli such as handling by increasing core body temperature. However, small birds in cold environments have been found to decrease body temperature (Tb) when handled over longer periods, although there are no data extending beyond the actual handling event in such birds. We therefore measured both the initial Tb decrease during ringing and standardized Tb sampling, and subsequent recovery of Tb after this handling protocol in wild Great Tits Parus major roosting in nestboxes in winter. Birds reduced their Tb by 2.3 °C during c. 4 min of handling. When birds were returned to their nestboxes after handling, Tb decreased by a further 1.9 °C over c. 2 min, reaching a Tb of 34.6 °C before taking 20 min to rewarm to 2.5 °C above their initial Tb. The Tb reduction during handling could be a consequence of increased heat loss rate from disrupted plumage insulation, whereas Tb reduction after handling might reflect reduced heat production. These are important factors to consider when handling small birds in the cold

    The functional significance of facultative hyperthermia varies with body size and phylogeny in birds

    No full text
    1. Facultative hyperthermia, the elevation of body temperature above normothermic levels, during heat exposure, importantly affects the water economy and heat balance of terrestrial endotherms. We currently lack a mechanistic understanding of the benefits hyperthermia provides for avian taxa. 2. Facultative hyperthermia has been proposed to minimize rates of water loss via three distinct mechanisms: M1) by maintaining body temperature (Tb) above environmental temperatures (Te), heat can be lost non‐evaporatively, saving water; M2) by minimizing the thermal gradient when Te > Tb, environmental heat gain and evaporative water loss rates are reduced; and M3) by storing heat via increases in Tb which reduces evaporative heat loss demands and conserves water. 3. Although individuals may benefit from all three mechanisms during heat exposure, the relative importance of each mechanism has not been quantified among species that differ in their body size, heat tolerance and mechanisms of evaporative heat dissipation. 4. We measured resting metabolism, evaporative water loss and real‐time Tb from 33 species of birds representing nine orders ranging in mass from 8 to 300 g and estimated the water savings associated with each proposed mechanism. We show that facultative hyperthermia varies in its benefits among species. 5. Small songbirds with comparatively low evaporative cooling capacities benefit most from (M1), and hyperthermia maintains a thermal gradient that allows non‐evaporative heat losses. Other species benefited most from (M2) minimizing evaporative losses via a reduced thermal gradient for heat gain at high Te. We found that (M3), heat storage, only improved the water economy of the sandgrouse, providing little benefit to other species. 6. We propose that differences in the frequency and magnitude of hyperthermia will drive taxon‐specific differences in temperature sensitivity of tissues and enzymes and that the evolution of thermoregulatory mechanisms of evaporative heat dissipation may contribute to differences in basal metabolic rate among avian orders. 7. Understanding the mechanistic basis of heat tolerance is essential to advance our understanding of the ecology of birds living in hot environments that are warming rapidly, where extreme heat events are already re‐structuring avian communities.Alexander R. Gerson, Andrew E. McKechnie, Ben Smit, Maxine C. Whitfield Eric K. Smith, William A. Talbot, Todd J. McWhorter, Blair O. Wol

    Current conservation status of the Blue Swallow Hirundo atrocaerulea Sundevall 1850 in Africa

    No full text
    The global Blue Swallow Hirundo atrocaerulea was classified as Vulnerable in 2010 on account of its small and rapidly declining population estimated at less than 1 500 pairs. We undertook this study to gain a better  understanding of the current status and threats facing this migratory species. Three previously unknown areas that might be part of the species’ non-breeding range were identified in Kenya and northern Tanzania. Within its breeding range we identified three previously unknown areas of potentially suitable habitat, one in Tanzania and two in Malawi, which require further exploration. Population viability assessment predicted that the Blue Swallow population will decline by 8% in 10 years. The overall probability of extinction of the species in the wild is 3%. Minimum viable population size analysis suggests that a goal for the long-term conservation of the Blue Swallow should be to mitigate current threats that are driving declines such that the population increases to a minimum of 3 600 individuals. This should consist of at least 900 individuals in each of the four clusters identified, along with a minimum of 500 individuals in at least one of the meta-populations per cluster. The four clusters are located in (1) the southeasten Democratic Republic of the Congo, (2) highlands of southern Tanzania and northern Malawi, (3) eastern highlands of Zimbabwe and (4) South Africa and Swaziland. The current proportions of the Blue Swallow population in strictly protected and unprotected areas on their breeding grounds are 53% and 47%, respectively, whereas on their non-breeding grounds the corresponding percentages are 25% and 75%, respectively. Our reassessment of the Blue Swallow’s risk of extinction indicates that it continues to qualify as Vulnerable according to the IUCN/SSC criteria C2a(i).Keywords: Blue Swallow, conservation recommendations, conservation status, distribution, Hirundinidae, minimum viable population size, population viability, species distribution modelling, threat
    corecore