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ABSTRACT
The Afromontane forests of Ethiopia are global biodiversity hotspots, known for their high biological diversity and
endemism. However, conservation of these areas is challenging due to increasing human threats, including
encroachment of agriculture and settlements, overgrazing of livestock, and selective logging. We examined the effects
of forest disturbances on birds, and highlights the potential conservation value of unprotected tropical montane
forests for birds in the dry evergreen Afromontane forests of the Bale Mountains, Ethiopia. We sampled birds across 2
yr in both protected forests (characterized by low levels of cultivation, overgrazing, and logging) and unprotected
forests (higher levels of disturbance). Using functional traits of birds related to habitat type, diet, and foraging stratum,
we characterized the differences between protected and unprotected forests in terms of avian species richness,
abundance, and assemblage composition. Overall, species richness was 27% higher and bird abundance was 19%
higher in unprotected forests. In contrast, species richness and abundance of forest specialists and canopy foragers
were significantly higher in protected forests. These findings suggest that unprotected, disturbed tropical montane
forests in Ethiopia help to achieve conservation aims in an area recognized for its global biodiversity importance. At
the same time, intact forest ecosystems need continued protection to maximize functional heterogeneity associated
with specialist tropical forest taxa.

Keywords: Afromontane forest, avifaunal diversity, avian guilds, Bale Mountains, protected area, forest specialists,
patch size

Effets des perturbations anthropiques sur la diversité des oiseaux dans les forêts montanes d’Éthiopie

RÉSUMÉ
Les forêts afromontanes d’Éthiopie sont des points chauds de la biodiversité mondiale, connues pour leur grande
diversité biologique et leur endémisme. Cependant, la conservation de ces zones pose un défi de taille en raison des
menaces humaines croissantes, dont l’empiètement de l’agriculture et des habitations, le surpâturage par le bétail et la
coupe forestière sélective. Nous avons examiné l’effet des perturbations forestières et la valeur potentielle de
conservation des forêts montanes tropicales non protégées pour les oiseaux dans les forêts afromontanes sèches
sempervirentes du massif de Balé, en Éthiopie. Nous avons échantillonné les oiseaux pendant deux ans dans les forêts
protégées (caractérisées par de faibles niveaux de culture, de surpâturage et de coupes forestières) et non protégées
(niveaux de perturbation plus élevés). À l’aide des traits fonctionnels des oiseaux associés au type d’habitat, au régime
alimentaire et à la strate d’alimentation, nous avons caractérisé la différence entre les forêts protégées et non
protégées en termes de richesse spécifique aviaire, d’abondance et de composition de l’assemblage. Dans l’ensemble,
la richesse spécifique était 27 % plus élevée et l’abondance des oiseaux était 19 % supérieure dans les forêts non
protégées. En revanche, la richesse spécifique et l’abondance des spécialistes des forêts et des espèces qui
s’alimentent dans la canopée étaient significativement plus élevées dans les forêts protégées. Ces résultats suggèrent
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que les forêts montanes non protégées et perturbées d’Éthiopie contribuent à atteindre les objectifs de conservation
dans une région reconnue pour l’importance mondiale de sa biodiversité. Par ailleurs, les écosystèmes forestiers intacts
nécessitent une protection continue afin de maximiser l’hétérogénéité fonctionnelle associée aux taxons des forêts
tropicales spécialistes.

Mots-clés : forêt afromontane, diversité aviaire, guildes aviaires, massif de Balé, aire protégée, spécialistes des
forêts, taille de la parcelle

INTRODUCTION

Degradation and destruction of habitats due to anthropo-

genic actions are major causes of global biodiversity

declines (Brooks et al. 2006). Understanding interspecific

variation in species’ responses to human disturbances is

important to enable effective conservation decision-

making, for example, by informing habitat protection

and restoration targets to maintain important ecological

phenomena such as species–area thresholds (Bruner et al.

2001, Bleher et al. 2006, Maron et al. 2012, Game et al.

2013). Protected areas are frequently viewed as safeguard-

ing ecological communities (Bruner et al. 2001); however,

particularly in developing countries, where funds and

national strategies for conservation and protected areas are

low, protected areas frequently fail to adequately achieve

this aim. Given the high rates of tropical deforestation

across the globe, understanding the combined conserva-

tion role of protected and unprotected forests is critical for

efficient allocation of conservation resources (Liu et al.

2001, Dirzo and Raven 2003, Buechley et al. 2015).

In forests, alteration of vegetation structure and habitat

fragmentation through deforestation and forest degrada-

tion are among the main threats affecting biodiversity

(Trzcinski et al. 1999, Sekercioglu 2002, Heikkinen et al.

2004, Chace and Walsh 2006). Forest birds are particularly

susceptible to alterations in vegetation structure and forest

extent because of their complex social structures and

dependence on vertical vegetation structure (Martin and

Possingham 2005, Davies and Asner 2014). However,

studies of forest birds have found species’ responses to

disturbances to be variable and dependent on a number of

factors, including species-specific ecological traits and the

severity of the disturbance (Newbold et al. 2013, Mandal

and Shankar Raman 2016). For example, many forest

specialist species are negatively affected by forest distur-

bance, and insectivorous birds have disappeared from

some heavily transformed forests (Canaday 1997, Sxeker-
cioğlu et al. 2002, Chace and Walsh 2006, Gove et al.

2008). In contrast, habitat generalist species that are better

adapted to open and/or shrub habitats can positively

exploit habitat changes induced by disturbance (Chace and

Walsh 2006, Gove et al. 2008, Sekercioglu 2012). Flexibility

in conservation management is therefore needed in order

to differentiate between aspects of anthropogenic devel-

opment and their associated impacts on biotic communi-

ties, and to manage the drivers with the greatest ecological

impact (Blair 1996, Entwisle and Stern 2005). The

information necessary for these important conservation

actions is often lacking in biologically important areas

across the globe, especially tropical forests.

The Bale Mountains massif in Ethiopia is considered a

biodiversity hotspot by Conservation International (Wil-

liams et al. 2004), and Bale Mountains National Park

(BMNP), the only protected area in the region, is on the

tentative list for World Heritage Site listing. Almost 300

bird species are found in the region, including 6 of the 18

species endemic to Ethiopia and an additional 14 near-

endemic species found only in Ethiopia and Eritrea (Asefa

2006, Shimelis et al. 2011). These mountains are desig-

nated as an Important Bird Area of Ethiopia (EWNHS

1996) and are considered to be the 4th-best birding site in

Africa (African Bird Club, https://www.africanbirdclub.

org/countries/Africa/hotspots). An increasing human pop-

ulation, and hence increased agriculture, livestock grazing,

and deforestation in the region, is placing extreme

pressure on the area’s natural resources, resulting in

large-scale alteration and degradation of habitats, even

within the protected area of the park (Mitiku 2013, Asefa

et al. 2015a). Such changes are likely to have profound

impacts on the avifaunal assemblage of the Bale Moun-

tains. However, the direction and severity of these impacts

may vary depending on the ecological guild.

Specialist species are potentially more vulnerable than

generalists to habitat degradation and fragmentation

because ecological specialization in diet or habitat often

leads to increased extinction risk (Sekercioglu 2011). Such

selective extinction processes not only lead to shifts in

species richness, assemblage composition, and relative

abundance, but can also alter ecological processes and

ecosystem services provided by birds (e.g., seed dispersal,

pollination, and nutrient cycling; Chapin et al. 1998, Lens

et al. 2002, Sekercioglu 2011, Pesendorfer et al. 2016).

Therefore, understanding the ecological partitioning of

avian diversity in areas with high species richness and

endemism, such as the Bale Mountains, is critical for

evaluating the overall ecological integrity of these ecosys-

tems and designing appropriate conservation approaches

(dos Anjos et al. 2015, Pavlacky et al. 2015, Pollock et al.

2015).

Here, we focus on bird species functionally categorized

by habitat type, diet, and foraging stratum to examine the
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impacts of human disturbance in the Afromontane forests

of the northern Bale Mountains of Ethiopia. Specifically,

we examine the impacts of human disturbance on avian

species richness and abundance on (1) the entire

assemblage, (2) species groups that are functionally unique

to a specific habitat type, and (3) forest specialist species

that are functionally unique to a specific diet and a specific

foraging stratum. We predicted that (1) compared with

unprotected forests, protected forests (assuming lower

levels of human-induced disturbance) would contain

higher overall species richness and bird abundance, as

well as higher richness and abundance of forest species,

especially insectivores and canopy foragers; and (2) as a

result of reduced forest cover and increased crop

cultivation, unprotected forests would host higher richness

and abundance of species associated with open land, open

woodland, and shrubland habitats.

METHODS

Study Area
We conducted our study on the northern slope of the Bale

Mountains in southeastern Ethiopia. Bale Mountains

National Park (BMNP; 6.508–7.178N, 39.508–39.928E), at

the center of these mountains, covers 2,200 km2 and
encompasses the largest expanse of Afroalpine habitat in

Africa and Ethiopia’s second-largest tropical montane

forest (Figure 1). The area experiences 2 rainy seasons,

with lighter rains from March to June and the heavy rainy

season from July to October, and a dry season between

November and February; mean annual rainfall is 1,219 mm

(Hillman 1986). There are 5 broad vegetation types in the

Bale Mountains (Hillman 1986, National Herbarium

2004): northern dry evergreen Afromontane forest (altitu-

dinal range of 2,900–3,400 m above sea level [m asl]),

northern montane grasslands (~3,000 m asl), ericaceous

forest (3,400–3,800 m asl), Afroalpine moorland and

grassland (3,800–4,377 m asl), and southern moist

evergreen (Harenna) forest (1,500–3,200 m asl).

We undertook our study near the upper tree limit

(between 2,900 and 3,400 m asl) in northern dry evergreen

montane forest, referred to as juniper forest (OARDB

2007, Redman et al. 2009). This forest existed in 6 isolated

patches. Juniperus procera was the dominant tree species

in these forest patches, with Hagenia abyssinica, Hyper-

icum revolutum, and Rapanea melanophloeos also present

(National Herbarium 2004, OARDB 2007, Asefa et al.

2015b). Although the 6 forest patches varied in size (120–

2,485 ha) and level of anthropogenic threat (Figure 1, Table

1), they occurred within a similar altitudinal range (2,900–

3,400 m asl) and had comparable topography and

vegetation composition (OARDB 2007, Asefa et al.

2015a, 2015b). Two of the patches (Adellay and Boditti)

were fully inside BMNP, and a third (Dinsho Hill) was the

park headquarters; these 3 sites were thus all in heavily

managed and protected parts of the park (Figure 1) and

represented protected forest (hereafter referred to as

protected sites). Three other sites (Angesso, Shaya, and

Darkina) were either outside BMNP or straddled the park

boundary (Figure 1), and were in areas that were not as

intensively protected by park management (hereafter

referred to as unprotected sites). As such, these 2 sets of

forest patches differed in the level of management intensity

and thus the nature and degree of human disturbance.

Protected sites were regularly patrolled by park rangers

based at outposts near these patches (~40 person-hr

day�1) and were actively managed to reduce illegal land use

as per the park’s management plan, whereas unprotected

sites were patrolled irregularly (~0.4 person-hr day�1) and

resource use was poorly regulated by either the national

park (areas inside the park boundary) or the Bale Zone

district forestry guards (areas outside the national park;

Mitiku 2013, Asefa et al. 2015a). Consequently, unpro-

tected sites had higher levels of anthropogenic disturbance

FIGURE 1. Map of the northern half of Bale Mountains National
Park (BMNP), Ethiopia, showing the 6 forest patches (study sites)
used to examine the effects of forest disturbance on birds and
the outposts where park rangers were based. Forest patch
abbreviations, protected patches: BD¼Boditti, HQs¼Dinsho Hill
(BMNP headquarters), and AD ¼ Adellay; unprotected patches:
AN ¼ Angesso, SH ¼ Shaya, and DA ¼ Darkina.
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compared with protected sites (Table 1; see also Asefa et al.

2015a). Both logging (35 cut trees ha�1 in protected forests

compared with 195 cut trees ha�1 in unprotected forests)

and livestock grazing (none to low levels in protected

forests vs. moderate to heavy levels in unprotected forests)

were significantly greater in the unprotected sites. The

unprotected sites were also the only patches that had

human settlements (3 houses ha�1) and agricultural

cultivation (38% land cover ha�1; Asefa et al. 2015a; Table

1).

The contrasting levels of disturbance in the unprotected

and protected forest patches resulted in significant

differences in the woody plant (trees, shrubs, and lianas

combined) and shrub species composition. However, tree

species composition was similar between the 2 forest patch

types (~90% similarity; Asefa et al. 2015b). Tree abundance

and canopy cover were reduced by 41% and 36%,

respectively, in unprotected forests. Grazing reduced grass

height by 33% and grass cover by 12% in unprotected

forests. In contrast, shrub abundance was 135% higher,

shrub cover was 33% higher, and proportion of bare

ground was 51% higher in the unprotected sites (Asefa et

al. 2015b).

Bird Surveys
In 2009 and 2012, bird surveys were carried out in the dry

(November to March) and wet (July to October) seasons,

thereby accounting for seasonal and temporal variation. In

each of the 6 forest patches, 5 parallel line transects of 1.0

to 1.5 km were established, spanning the altitudinal range

of each patch. The first transect in each forest patch was

randomly located and the remaining transects were then

systematically laid out to maintain a minimum distance of

~300 m between transects. Along each transect, 4 fixed

bird survey points were selected systematically, again by

maintaining a minimum distance of ~300 m between

points to avoid double counting (Bibby et al. 1998).

Each transect was surveyed twice on 1 sampling day per

season (once early in the morning, 0730–1030 hours, and

again in the late afternoon, 1430–1730 hours), resulting in

each transect being sampled a total of 8 times during the

study. The identity and number of birds seen or heard, and

their estimated sighting distances (in bands of 5 m

intervals) within a radius of 50 m from the survey point

were recorded for 8 min after an initial 2 min settling

period (Bibby et al. 1998). Any birds that flushed away

from the census point upon approach to the station or that

flew away during the counting period were recorded at the

point at which they were first seen (following van

Rensburg et al. 2000).

Taxonomic nomenclature and order of presentation

used for this study follow Clements et al. (2016). To

account for species present but not detected, we used

richness estimators that assumed imperfect detection

(Colwell et al. 2012).

Analysis
Bird species were classified into 4 different guilds based on

their broad habitat type preferences (forest, open wood-

land, shrubland, and open land) following Redman et al.

(2009), Kissling et al. (2012), and Gove et al. (2008). Based

on these broad guilds, we further classified species within

the forest guild into 5 subguilds based on their diets (3

subguilds: carnivore, frugivore, and insectivore) and

foraging layers (2 subguilds: ground layer and canopy

layer) following Shimelis et al. (2011) and Gove et al.

(2013); for species-specific guild and subguild member-

ships in our study, see Appendix Table 5. We identified

these forest-specialist subguilds for 2 main reasons. First,

the primary goal of conserving the study area’s forests from

an avian perspective is to maintain the diversity of bird

species typically associated with forest habitats (OARDB

2007), and second, forest insectivores have repeatedly been

shown to be especially sensitive to forest change (e.g.,

Sxekercioğlu et al. 2002, Pollock et al. 2015, Powell et al.

2015).

Species richness and abundance. We used an individ-

ual-based rarefaction and extrapolation methods to

calculate species richness. We chose an individual-based

instead of a sample-based approach because our primary

TABLE 1. Description of the forest patches (sites), including level of disturbance, in Bale Mountains National Park (BMNP), Ethiopia
(Figure 1), used to examine the impacts of human disturbance on birds. Disturbance data were taken from Asefa et al. (2015a), and
their values are mean 6 SD number of houses ha�1 for settlement, number of tree stumps ha�1 for logging, and percentage cover
ha�1 for agriculture. For each disturbance type in each patch, n ¼ 15 transects.

Site

Description Disturbance

Protection status Area (ha) Elevation (m) Settlement Logging Grazing level Agriculture

Adellay Protected 784.9 2,951–3,400 0 60.0 6 15.0 None–Low 0
Boditti Protected 555.1 2,904–3,356 0 27.5 6 2.5 Low–Moderate 0
Dinsho Hill Protected 118.9 2,900–3,150 0 17.5 6 12.5 None–Low 0
Angesso Unprotected 2,237.9 2,915–3,270 1.2 6 0.1 122.5 6 12.5 Moderate–Heavy 42.1 6 12.1
Darkina Unprotected 1,016.6 2,922–3,348 4.5 6 0.2 182.5 6 32.5 Moderate–Heavy 67.1 6 10.8
Shaya Unprotected 2,485.1 2,967–3,391 2.4 6 0.3 190.0 6 32.5 Moderate–Heavy 3.4 6 1.4
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interest was to estimate (compare) species richness (the

total number of species at a particular site) rather than

species density (the number of species per unit area), the

latter of which is computed from sample-based data

(Colwell et al. 2012). We also used the Chao 1 estimator

(an appropriate estimator for individual-based data;

Colwell et al. 2012) to estimate asymptotic species richness

(S(est), the total number of species expected in an area,

including those species not observed during the survey

period) for each forest type (protected vs. unprotected) to

assess sampling completeness. We used the summed

abundance for each forest type of the number of

individuals of each species recorded along each transect

as the input for the individual-based richness computation.

We calculated estimated species richness (S(est)) using

EstimateS 9.1.0 software (http://viceroy.eeb.uconn.edu/

estimates; Colwell 2013). To compare estimated (based

on extrapolation) species richness between forest types,

extrapolation curves of S(est) were computed with 95%

confidence intervals (CI). This approach enabled us to

make statistically robust extrapolations of samples for

direct comparisons among sites of different sample sizes

(Colwell et al. 2012). For each comparison, if the result of

doubling the smaller sample was greater than the sample

size of the larger sample, both samples were extrapolated

to twice the number of individuals recorded in the smaller

sample in either of the 2 forest types. Otherwise, smaller

samples were extrapolated to the total number of

individuals recorded in the larger sample, following

Colwell et al. (2012). These analyses were conducted for
each forest type in each season and for all seasons

combined. For each guild and subguild, however, these

comparisons were made using only pooled seasonal data

due to the small sample size of most guilds. Following the

recommendations of Walther and Moore (2005), Colwell

et al. (2012), and Colwell (2013), we used nonoverlapping

95% CIs of S(est) at the maximum extrapolated sample size

for a conservative criterion of statistical difference (at a ¼
0.05) in species richness between sites.

A preliminary analysis using Distance 4.2 (Thomas et al.

2010) did not show systematic differences by season or

forest type in overall detection probability using the 5 m

distance bands up to 50 m. Thus, given that we were not

concerned with individual species, we used the raw

numbers of detections within 50 m as our measures of

abundance. We tested the effects of disturbance, season,

and fragmentation on overall abundance (i.e. total number

of individual birds recorded, regardless of species) using a

generalized linear mixed model, with a Poisson probability

distribution and log-link function, in SPSS 20 (IBM,

Armonk, New York, USA). Bird abundance was considered

the response variable, while forest type (disturbed vs.

undisturbed), season, and log-transformed patch size were

treated as fixed effects. Forest patch ID and transect ID

were included as random effects to account for potential

nonindependence of transects within a forest patch and of

season along each transect. Due to the small number of

forest sites in our study, we chose patch size as the main

fragmentation parameter, and did not consider other

potentially relevant fragmentation parameters, such as

isolation, connectivity, or perimeter-to-area ratio (Gustaf-

son and Parker 1992). As previously noted, comparisons

for each guild and subguild were made using pooled

seasonal data due to the small sample size of most guilds.

We examined model fit for the entire assemblage and for

each (sub)guild with plots of fitted data vs. standardized

model residuals, which in most cases showed a satisfactory

fit. Results are presented as mean 6 SE, and the statistical

significance of differences was tested at a ¼ 0.05.

Assemblage composition. We used 3 approaches to

evaluate differences in assemblage composition between

the 2 forest types (protected and unprotected). First, we

estimated the number of shared species between the 2

forest types using the Chao 1 V(est) estimator in EstimateS

9.1.0. This estimator computes the real (actual) number of

shared species, while accounting for species present but

not observed (Colwell et al. 2012, Colwell 2013). Second,

we used a Bray-Curtis similarity index to calculate

similarities in bird species composition among assemblag-

es using Primer v6 software (Clarke and Gorley 2006).

Data were 4th-root transformed before analysis to down-

weight common species relative to rare ones (Clarke and

Gorley 2006). We then performed an analysis of similarity

(ANOSIM) to assess differences in bird species composi-

tion between forest types both within and between seasons

(Clarke and Gorley 2006). Global R values were used to

determine the degrees of similarity among treatments; the

closer this value is to 1, the more dissimilar are

assemblages (Clarke and Gorley 2006). Significances of

differences were tested at a ¼ 0.05. Finally, we conducted
similarity percentage analysis (SIMPER) in Primer v6

software to calculate the percentage contribution that each

species made to the dissimilarity between bird assemblages

of the forest types and to identify which species were

contributing most to the differences (i.e. species that are

characteristic of each forest type) between assemblages

(Clarke and Gorley 2006). Results of this SIMPER analysis

should be interpreted with caution as we undertook this

analysis using raw abundance data without accounting for

potential differences in intra- and inter-specific detection

probability by season or forest type.

RESULTS

Species Richness
A total of 12,625 individuals comprising 66 avian species

were recorded across both forest types throughout the

study: 5,651 individuals from 46 species in the protected
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forest sites and 6,974 individuals from 60 species in the

unprotected forest patches (Table 2, Appendix Table 5).

The individual-based curves almost reached an asymptote

in all cases (Figure 2), and comparisons of observed and

estimated (Chao 1 estimator) species richness for each

dataset showed that sampling completeness among sites

was .97% (Table 2).

Estimated (i.e. extrapolated) species richness of the

entire bird assemblage (i.e. all species taken together) was

greater in the unprotected forests than in the protected

forests, both within and across seasons (Table 2, Figure 2).

The estimated richness in the unprotected forests was 22%

greater during the dry season, 33% greater during the wet

season, and 26% greater when seasons were pooled (Table

2). Similarly, the 4 habitat guilds showed either increased

or equal estimated species richness in the unprotected

forests relative to the protected forests (Figure 3). Guilds

with significantly higher estimated species richness in the

unprotected sites were open woodland (133% higher;

Figure 3B) and open land (86% higher) habitat guilds

(Figure 3A). Among the 5 forest specialist subguilds

considered, insectivores and canopy layer foragers were

9% and 11% lower in the unprotected forests, respectively

(Figure 4). Forest specialist frugivores and ground layer

foragers, however, occurred in equal numbers in both

forest types, with each subguild represented by 3 species in

each forest type (Appendix Table 5).

Abundance
Mean bird abundance was ~18–20% higher in unprotect-

ed forests compared with protected forests in both seasons

combined, and was ~14% higher during the wet season

than the dry season (Table 2). The effects of both forest

type (protected vs. unprotected) and season on overall bird

abundance were statistically significant (ANOVA, forest

type: F1,55 ¼ 60.13, P , 0.05, effect b ¼�0.23 6 0.03, t ¼
�6.94, P , 0.05; season: mean, dry season¼ 194.63 6 7.89,

wet season¼ 226.20 6 9.76, F1,55¼ 69.47, P , 0.05, effect

b ¼�0.16 6 0.02, t ¼�6.53, P , 0.05), but the effects of

the interaction between these terms (F1,55¼ 0.17, P¼ 0.68)

and patch size (F1,55¼ 0.30, P ¼ 0.68) were not. However,

pairwise contrasts revealed that seasonal effects were

stronger in the unprotected forests, which had ~27%
more individual birds during the wet season than the dry

season, whereas protected forests had only 16% more birds

in the wet than the dry season (unprotected: contrast

estimate 6 SE, wet season–dry season¼ 36.4 6 13.6, t56¼
2.6, P , 0.05; protected: 26.7 6 13.6, t56¼ 1.7, P¼ 0.05; n

¼ 60 for both forest types).

At the guild level, the forest-specialist habitat guild

(ANOVA, F1,27 ¼ 12.94, P , 0.05) had 36% higher

abundance in the protected forests than the unprotected

forests. The opposite pattern was found for the open land

and shrubland habitat guilds (ANOVA, F1,27 ¼ 42.34 and

5.19, respectively, both P , 0.05); these guilds were 122%

and 66% higher, respectively, in the unprotected forests

(Table 3A, Figure 5A). The effect of habitat patch size on

guild abundance was only significant for forest habitat

specialist species (ANOVA, F1,27¼ 5.51, P , 0.05, effect b
¼ 0.34 6 0.15, t ¼ 2.35, P , 0.05).

Among the 5 forest specialist subguilds, only the

abundances of insectivores (ANOVA, F1,27 ¼ 4.55, P ,

0.05) and canopy layer foragers (F1,27 ¼ 7.24, P , 0.05)

showed significant differences between protected and

unprotected forests, with the abundance of forest specialist

insectivores and canopy layer foragers being ~14% and

~17% higher, respectively, in the protected forests (Table

3B, Figure 5B).

Assemblage Composition
Observed (Chao 1 V(obs)) and estimated (Chao 1 V(est))

numbers of shared species between the protected and

unprotected sites were 40 (61% of species) and 41 species,

respectively. Despite this high degree of species overlap,

the ANOSIM revealed significant differences in bird

assemblage composition between the 2 forest types, both

within and between seasons (dry season: Global R ¼ 0.7;

wet season: R¼ 0.5; across season: R¼ 0.5; in all cases, P ,

0.05). Results of the SIMPER analysis showed that ~50% of

the differences in assemblage composition between the 2

TABLE 2. Observed (S(obs)) and estimated [(based on Chao 1 (S(est) Chao 1) and extrapolation (S(est) extrapolated))] overall avian
species richness and mean abundance in protected and unprotected forest sites in Afromontane forests in the Bale Mountains,
southeastern Ethiopia, during the dry season, wet season, and both seasons combined. In the case of abundance, values are mean 6
SE number of individuals recorded along each transect (in each case, n¼ 15 transects); in the case of estimated richness, values are
mean 6 95% CI of randomizations (n¼ 100 randomizations) in each condition. Means with no subscript letters in common denote
significant differences between sites at P , 0.05. N is total number of individuals sighted.

Season Status N S(obs) Abundance S(est) Chao 1 S(est) extrapolated

Dry Protected 2,625 41 175.00 6 7.72 a 42.0 6 1.8 a 42.7 6 2.2 a

Unprotected 3,214 52 214.27 6 3.10 b 52.0 6 0.2 b 52.2 6 0.7 b

Wet Protected 3,026 39 201.73 6 2.69 a 39.8 6 1.4 a 40.3 6 1.8 a

Unprotected 3,760 53 250.67 6 3.67 c 53.2 6 0.5 b 53.4 6 0.8 b

Combined Protected 5,651 46 376.73 6 4.00 a 47.5 6 2.2 a 48.1 6 2.4 a

Unprotected 6,974 60 464.93 6 20.44 b 60.3 6 0.7 b 60.6 6 1.1 b

The Condor: Ornithological Applications 119:416–430, Q 2017 American Ornithological Society

A. Asefa, A. B. Davies, A. E. McKechnie, et al. Disturbance effects on Afromontane birds 421



forest patch types were driven by 11 species during the dry

season (5 forest specialist and 6 nonspecialist or generalist

species) and 8 species during the wet season (4 forest

specialist and 4 nonspecialist species; Table 4). Forest

specialists, including the White-backed Black-Tit (Melani-

parus leuconotus), Brown Woodland-Warbler (Phyllosco-

pus umbrovirens), and Broad-ringed White-eye (Zosterops

poliogastrus), were found to be the most characteristic

species of the protected sites, whereas generalist species,

such as the Dusky Turtle-Dove (Streptopelia lugens),

Abyssinian Siskin (Serinus nigriceps), Streaky Seedeater

(Serinus striolatus), and Brown-rumped Seedeater (Serinus

tristriatus), were most characteristic of the unprotected

forest sites (Table 4).

DISCUSSION

Our results reveal that avian species that are functionally

unique to Afromontane forests, especially forest specialist

insectivores and canopy layer foragers, are dependent on

intact (protected) forests with little human disturbance.

These species are not only affected by disturbance-induced

changes in vegetation structure and plant species compo-

sition, but also by decreased forest extent. Furthermore,

the 2 forest types (protected and unprotected) that we

studied differed in their bird assemblage composition, with

a significant change from specialists in protected forests to

generalists in unprotected forests. These results support

the findings of numerous studies from around the globe

that have shown specialist bird species to be among the

most susceptible to forest disturbance (e.g., Stouffer and

Bierregaard 1995, Sekercioglu 2012, Arcilla et al. 2015,

Pavlacky et al. 2015). Thus, for the long-term conservation

of forest specialists, particularly Ethiopian endemics such

as the Abyssinian Woodpecker (Dendropicos abyssinicus),

Yellow-fronted Parrot (Poicephalus flavifrons), White-

backed Black-Tit (Melaniparus leuconotus), and Abyssi-

nian Catbird (Parophasma galinieri), and Afrotropical

species more broadly, it is important to (1) manage the

drivers with the greatest ecological impact on primary

forests, (2) inform, and improve on, policy responsible for

habitat restoration targets, and (3) provide much-needed

international support for the optimal management of

FIGURE 2. Observed (S(obs)) and estimated (S(est)) species
richness values for the entire bird assemblage in protected sites
(PS) and unprotected sites (UPS) of Afromontane forests in the
Bale Mountains, southeastern Ethiopia, during (A) the dry
season, (B) the wet season, and (C) both seasons combined.
Values are mean (n¼ 100) species richness with 95% confidence
intervals (CI); n is number of sample randomizations used.

TABLE 3. Results of generalized linear mixed models assessing
the effects of forest type (disturbed vs. undisturbed) and forest
patch size on the abundance of the different avian guilds and
subguilds in Afromontane forests in the Bale Mountains,
southeastern Ethiopia. Only estimates (6 SE) for land use type
are provided as the effect of patch size was not significant in any
models, except in the case of forest habitat specialists. Positive
estimates indicate higher values in the undisturbed forest sites.

Model Estimate t P

(A) Habitat guild a

Forest 0.32 6 0.15 3.60 ,0.05
Open land �1.43 6 0.62 �2.32 ,0.05
Shrubland �1.03 6 0.23 �4.42 ,0.05
Woodland �0.45 6 0.43 �1.06 0.30

(B) Forest specialist subguild a

Carnivore 0.79 6 0.51 1.53 0.14
Frugivore �0.15 6 0.53 �0.30 0.77
Insectivore 0.71 6 0.34 2.13 ,0.05
Ground layer �0.23 6 0.53 �0.44 0.66
Forest canopy 0.80 6 0.30 2.69 ,0.05

a For species-specific habitat, diet, and foraging stratum
requirements, see Appendix Table 5.
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existing protected areas in countries such as Ethiopia that

still contain areas of primary forest.

In contrast to forest specialists, the species richness and

abundance of birds overall (i.e. all species taken together)

were higher in unprotected Afromontane forest patches

compared with protected forests. This can likely be

explained by the persistence of some forest species in

unprotected forests, coupled with invasion by nonforest

species, such as the Cape Crow (Corvus capensis), Pied

Crow (C. albus), Yellow Bishop (Euplectes capensis), and

Red-collared Widowbird (E. ardens), into these areas.

Guilds that included species that are typically not

associated with forests, such as open land, shrubland,

and open woodland habitat guilds, had significantly higher

species richness in the unprotected forests. These guilds

are known to prefer disturbed and open habitats, so these

results are not surprising (Mulwa et al. 2012, Sekercioglu

2012, Gove et al. 2013; see also Coetzee and Chown 2016

for similar findings in a savanna habitat).

However, these findings contradict the general trend of

lower bird species richness in forests that have been

transformed into farmland and/or undergone some other

form of extensive habitat transformation (for tropical

regions, see, e.g., Daily et al. 2001,Waltert et al. 2004, Seavy

2009; for temperate regions, see, e.g., Heikkinen et al. 2004,

Breitbach et al. 2010). Such opposing findings could have

arisen because most studies that have supported the

general trend of decreased forest diversity with increased

disturbance have typically investigated forests that are

intensively utilized as agroecosystems or have been

completely converted (e.g., Waltert et al. 2004, Seavy

2009), as opposed to forests that have been disturbed, but

not heavily transformed, as with the forests in our study

sites. Another potential explanation could be that, unlike

in many other countries, agrofarming in rural Ethiopia

consists of small-scale, traditional farming practices, where

the use of insecticides and pesticides is rare and therefore

unlikely to have deleterious effects on insect abundance,

and therefore insectivorous birds (Gove et al. 2013).

Our findings of higher overall species richness and

abundance in the more disturbed and unprotected forests

do, however, support those of previous studies carried out

in disturbed tropical forests in east Africa (e.g., Mulwa et

al. 2012, Gove et al. 2013, Buechley et al. 2015), and there

are several potential reasons why African birds might

demonstrate increased resilience to human disturbance.

First, the African avifauna, including functionally unique

species such as understory insectivores, might be more

capable of withstanding considerable habitat modification

and disturbance compared with bird species found

FIGURE 3. Observed (S(obs)) and estimated (S(est)) species richness values for 4 habitat guilds in protected sites (PS) and
unprotected sites (UPS) of Afromontane forests in the Bale Mountains, southeastern Ethiopia: (A) open land, (B) woodland, (C)
shrubland, and (D) forest. Values are mean (n ¼ 100) species richness with 95% confidence intervals (CI), unless the confidence
interval closes to zero (or overlaps S(obs) or S(est)); n is number of sample randomizations used.
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elsewhere due to the longer history of anthropogenic forest

clearance and agrarian activity in Africa (Chapman and

Chapman 1996, Darbyshire et al. 2003). Such resilience of

the African fauna to disturbance has been suggested by

several previous studies that focused on birds and spanned

a wide range of ecosystems and biogeographical regions

(Karr 1976, van Rensburg et al. 2004, Gove et al. 2008,

2013, Mulwa et al. 2012). Second, previous studies have

found intact forest habitats, particularly in Ethiopia, to

have fewer bird species than the surrounding or nearby

open (disturbed) forests, attributing such findings to the

relatively young age of Ethiopian forests and the possibility

that they have been regularly affected by climatic changes

due to their topography (Gove et al. 2008, 2013, Buechley

et al. 2015). Ethiopian forest habitats not only have fewer

bird species than nearby open habitats, but also have

relatively fewer specialist species compared with other

tropical forests (Buechley et al. 2015). Third, it is well

understood that spatial heterogeneity is an important

driver of species richness across taxa (van Rensburg et al.

2002, Sekercioglu et al. 2007, Gove et al. 2008, Stein et al.

2014). In our study sites, the disturbed forests comprised

both primary and secondary forest patches, in addition to

galleries and open areas (cultivated lands) with retained

canopy trees, whereas the protected forest patches were

FIGURE 4. Observed (S(obs)) and estimated (S(est)) species
richness values for forest specialist subguilds in protected sites
(PS) and unprotected sites (UPS) of Afromontane forests in the
Bale Mountains, southeastern Ethiopia: (A) carnivores, (B)
insectivores, and (C) canopy layer foragers. Values are mean (n
¼100) species richness with 95% confidence intervals (CI), unless
the confidence interval closes to zero (or overlaps S(obs) or
S(est)); n is number of sample randomizations used.

FIGURE 5. Abundances for (A) habitat guild and (B) forest
specialist subguild categories in protected sites and unprotected
sites of Afromontane forests in the Bale Mountains, southeastern
Ethiopia. Values are mean 6 SE. In all cases, n ¼ 15. Letters
indicate a significant difference between sites at a ¼ 0.05.
Abbreviations for the forest specialist subguilds in panel B: CLF¼
canopy layer forager (i.e. forest specialist species that forages in
the tree canopy); GLF¼ground layer forager (i.e. forest specialist
that forages on the ground).
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typically dominated by primary growth with less shrubby

understory and open habitat (Mitiku 2013, Asefa et al.

2015b). Therefore, it is possible that the higher bird species

richness and abundance in the unprotected forests resulted

from the high diversity of structural habitat elements in

these forests compared with the less disturbed forest

patches. Indeed, structural heterogeneity of vegetation is

known to exert a stronger influence on bird diversity than

canopy cover (Davies and Asner 2014). As such, some

forest specialist species are able to persist in unprotected

forests, as well as several nonforest species, thereby leading

to higher species richness in disturbed environments (see

also Gascon et al. 1999, Sekercioglu et al. 2007, Gove et al.

2008).

Similarly to urban environments, where the best

opportunities to conserve species may exist in degraded

or even artificial environments (Sushinsky et al. 2013,

Thomas 2013; but see also Coetzee and Chown 2016), the

higher overall avian diversity in the unprotected forests

might indicate the potential importance of disturbed

habitats for bird conservation. These findings are partic-

ularly pertinent given the current unprecedented rate of

forest degradation that is occurring globally, with the

greatest proportion of loss occurring in developing

Afrotropical countries such as Ethiopia (FAO 2010). It is

therefore likely that the remaining primary forests in such

countries will not survive or be available for the adequate,

long-term conservation of forest birds, and the long-term

perpetuity of several forest species may instead depend on

well-managed, disturbed forestscapes. Other similar sug-

gestions have been made for the region, for example ‘‘bird

friendly’’ shade coffee farms, that, although they result in

the loss of primary forests, maintain high overall avian

species richness (Buechley et al. 2015). However, the

viability of such disturbed forests as breeding habitats for

forest birds requires further study, including species-

specific population dynamics and ranging patterns. It is

possible that disturbed forest patches could act as stepping

stones for forest birds searching for more suitable habitat

(Buechley et al. 2015), but they could also function as

ecological traps and local population sinks for many

functionally unique species, which could lead to functional

homogenization and further conservation concern (Aerts

et al. 2008, Coetzee and Chown 2016).

In conclusion, changes in vegetation composition and

structure caused by human disturbance in our study region

(Asefa et al. 2015a, 2015b) have led to considerable

changes in bird richness, abundance, and assemblage

composition. While habitat disturbance has led to an

overall increase in avian diversity, and in the abundance of

TABLE 4. Similarity percentage analysis (SIMPER) of bird abundance between protected (PS) and unprotected (UPS) forest sites in
Afromontane forests in the Bale Mountains, southeastern Ethiopia, in each season, to determine the percentage contribution that
each species made to the dissimilarity between bird assemblages of the forest sites and to identify which species were contributing
most to the differences between assemblages.

Species a

Average
abundance

(PS)

Average
abundance

(UPS)
Average

dissimilarity

Percentage of
contribution to

overall
dissimilarity

Cumulative
percentage of

dissimilarity

Dry season
White-backed Black-Tit (Melaniparus leuconotus) 31.67 9.47 5.97 9.48 9.48
Broad-ringed White-eye (Zosterops poliogastrus) 27.27 9.60 4.89 7.77 17.25
Common Chiffchaff (Phylloscopus collybita) 16.73 1.47 4.04 6.42 23.67
Brown Woodland-Warbler (Phylloscopus umbrovirens) 22.67 14.47 2.87 4.55 28.22
Brown-rumped Seedeater (Serinus tristriatus) 1.73 10.40 2.50 3.98 32.20
Dusky Turtle-Dove (Streptopelia lugens) 7.60 13.93 2.41 3.82 36.02
Abyssinian Thrush (Turdus abyssinicus) 6.87 13.13 2.26 3.58 39.60
Streaky Seedeater (Serinus striolatus) 2.53 9.27 2.09 3.31 42.91
Common Bulbul (Pycnonotus barbatus) 0.47 7.20 1.82 2.88 45.79
Wattled Ibis (Bostrychia carunculata) 5.07 5.20 1.81 2.87 48.66
Abyssinian Siskin (Serinus nigriceps) 0.47 6.93 1.77 2.80 51.46

Wet season
White-backed Black-Tit 32.87 8.87 5.69 9.95 9.95
Yellow-crowned Canary (Serinus flavivertex) 17.27 25.80 4.74 8.30 18.25
Broad-ringed White-eye 27.67 17.47 4.08 7.13 25.38
Abyssinian Catbird (Parophasma galinieri) 15.87 22.87 3.54 6.20 31.58
Brown Woodland-Warbler 22.93 11.53 3.09 5.41 36.99
Tacazze Sunbird (Nectarinia tacazze) 18.27 12.87 2.84 4.97 41.96
Slender-billed Starling (Onychognathus tenuirostris) 0.40 13.60 2.83 4.96 46.92
Streaky Seedeater 6.47 17.93 1.64 4.86 51.78

a For species-specific habitat requirements, see Appendix Table 5.
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most avian functional guilds, it has negatively affected

forest specialist species, which could lead to functional

homogenization, although the ubiquity of this pattern

remains to be examined. Therefore, it is critically

important that we obtain a better understanding of the

value and adequate management of unprotected habitats

to maximize conservation targets. Corroborating the

findings of Buechley et al. (2015), who compared avian

diversity between primary forests and shade coffee farms

in Ethiopia, our study supports the value of unprotected

habitats for bird conservation, even if they are somewhat

disturbed. It is, however, important to note that our study

also highlights the need for proper protection of intact

forest ecosystems if our aim is to maximize functional

heterogeneity associated with tropical forest taxa. This is

particularly true for global biodiversity hotspots, such as

the Ethiopian Afromontane forests, where species ende-

mism is typically high.
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APPENDIX TABLE 5. List of species and their overall abundances recorded in unprotected and protected sites of Afromontane
forests in the northern Bale Mountains, Ethiopia. Taxonomic order and nomenclature follow Clements et al. (2016). Species indicated
by the superscript letter ‘‘a’’ are migrants.

Common name Scientific name Habitat Food type Substrate Unprotected Protected

Chestnut-naped Francolin Pternistis castaneicollis Shrubland Omnivore Ground layer 106 141
Wattled Ibis Bostrychia carunculata Open land Insectivore Ground layer 102 134
African Goshawk Accipiter tachiro Forest Carnivore Tree canopy 2 5
Little Sparrowhawk Accipiter minullus Forest Carnivore Tree canopy 0 1
Rufous-chested Sparrowhawk Accipiter rufiventris Forest Carnivore Tree canopy 4 22
Rouget’s Rail Rougetius rougetii Shrubland Omnivore Ground layer 0 2
Speckled Pigeon Columba guinea Open land Granivore Ground layer 12 0
Rameron Pigeon Columba arquatrix Forest Frugivore Tree canopy 47 0
Dusky Turtle-Dove Streptopelia lugens Woodland Granivore Ground layer 336 184
Red-eyed Dove Streptopelia semitorquata Woodland Granivore Ground layer 10 0
White-Cheeked Turaco Tauraco leucotis Forest Frugivore Tree canopy 125 14
African Emerald Cuckoo a Chrysococcyx cupreus Shrubland Insectivore Shrub layer 1 0
Speckled Mousebird Colius striatus Woodland Frugivore Tree canopy 10 0
Narina Trogon Apaloderma narina Forest Insectivore Tree canopy 0 1
Eurasian Hoopoe a Upupa epops Woodland Insectivore Ground layer 17 0
Abyssinian Ground-Hornbill Bucorvus abyssinicus Open land Insectivore Ground layer 2 0
Rufous-necked Wryneck Jynx ruficollis Woodland Insectivore Tree canopy 5 1
Nubian Woodpecker Campethera nubica Forest Insectivore Tree canopy 0 2
Abyssinian Woodpecker Dendropicos abyssinicus Forest Insectivore Tree canopy 16 39
Mountain Gray Woodpecker Dendropicos spodocephalus Forest Insectivore Tree canopy 1 13
Black-winged Lovebird Agapornis taranta Forest Frugivore Tree canopy 171 157
Yellow-fronted Parrot Poicephalus flavifrons Forest Frugivore Tree canopy 0 59
Northern Puffback Dryoscopus gambensis Forest Insectivore Tree canopy 6 0
Ethiopian Boubou Laniarius aethiopicus Forest Insectivore Tree canopy 104 33
Northern Fiscal Lanius humeralis Woodland Carnivore Shrub layer 15 0
Cape Crow Corvus capensis Open land Omnivore Ground layer 50 0
Pied Crow Corvus albus Open land Omnivore Ground layer 4 0
Fan-tailed Raven Corvus rhipidurus Open land Omnivore Ground layer 42 24
Thick-billed Raven Corvus crassirostris Open land Omnivore Ground layer 11 22
Thekla Lark Galerida theklae Open land Insectivore Ground layer 24 4
White-backed Black-Tit Melaniparus leuconotus Forest Insectivore Tree canopy 275 968
Common Bulbul Pycnonotus barbatus Shrubland Omnivore Shrub layer 228 9
Brown Woodland-Warbler Phylloscopus umbrovirens Forest Insectivore Tree canopy 390 684
Common Chiffchaff a Phylloscopus collybita Forest Insectivore Tree canopy 22 251
Cinnamon Bracken-Warbler Bradypterus cinnamomeus Shrubland Insectivore Shrub layer 234 98
Winding Cisticola Cisticola galactotes Shrubland Insectivore Shrub layer 30 3
Tawny-flanked Prinia Prinia subflava Shrubland Insectivore Shrub layer 120 30
Abyssinian Catbird Parophasma galinieri Forest Insectivore Tree canopy 558 420
Broad-ringed White-eye Zosterops poliogastrus Forest Omnivore Tree canopy 406 824
Dusky-brown Flycatcher Muscicapa adusta Forest Insectivore Tree canopy 61 142
Abyssinian Slaty-Flycatcher Melaenornis chocolatinus Woodland Insectivore Tree canopy 55 93
Rüppell’s Robin-Chat Cossypha semirufa Forest Insectivore Ground layer 195 84
Moorland Chat Cercomela sordida Open land Insectivore Ground layer 178 12
Abyssinian Ground-Thrush Geokichla piaggiae Forest Insectivore Ground layer 80 48
Groundscraper Thrush Psophocichla litsitsirupa Open land Insectivore Ground layer 95 18
Abyssinian Thrush Turdus abyssinicus Forest Insectivore Ground layer 462 203
Slender-billed Starling Onychognathus tenuirostris Shrubland Omnivore Shrub layer 235 10
Collared Sunbird Hedydipna collaris Shrubland Nectarivore Tree canopy 18 0
Tacazze Sunbird Nectarinia tacazze Shrubland Nectarivore Shrub layer 274 299
Malachite Sunbird Nectarinia famosa Shrubland Nectarivore Shrub layer 0 1
Western Yellow Wagtail Motacilla flava Open land Insectivore Ground layer 26 0
Gray Wagtail a Motacilla cinerea Open land Insectivore Ground layer 3 0
Red-Throated Pipit a Anthus cervinus Open land Insectivore Ground layer 50 0
Yellow-crowned Canary Serinus flavivertex Shrubland Granivore Shrub layer 440 291
Abyssinian Siskin Serinus nigriceps Open land Granivore Ground layer 155 16
African Citril Serinus citrinelloides Shrubland Granivore Shrub layer 8 2
Streaky Seedeater Serinus striolatus Shrubland Granivore Shrub layer 408 135
Brown-rumped Seedeater Serinus tristriatus Shrubland Granivore Ground layer 277 66
Swainson’s Sparrow Passer swainsonii Open land Granivore Ground layer 50 0
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APPENDIX TABLE 5. Continued.

Common name Scientific name Habitat Food type Substrate Unprotected Protected

Baglafecht Weaver Ploceus baglafecht Shrubland Insectivore Shrub layer 78 9
Yellow Bishop Euplectes capensis Shrubland Granivore Shrub layer 9 0
Red-collared Widowbird Euplectes ardens Shrubland Granivore Shrub layer 26 0
Yellow-bellied Waxbill Coccopygia quartinia Shrubland Granivore Shrub layer 174 67
Abyssinian Crimson-wing Cryptospiza salvadorii Forest Granivore Shrub layer 4 0
Common Waxbill Estrilda astrild Shrubland Granivore Shrub layer 125 10
Pin-tailed Whydah Vidua macroura Shrubland Granivore Shrub layer 2 0
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