1,974 research outputs found

    A flux-ratio anomaly in the CO spectral line emission from gravitationally-lensed quasar MG J0414+0534

    Get PDF
    We present an analysis of archival observations with the Atacama Large (sub-)Millimetre Array (ALMA) of the gravitationally lensed quasar MG J0414+0534, which show four compact images of the quasar and an Einstein ring from the dust associated with the quasar host galaxy. We confirm that the flux-ratio anomalies observed in the mid-infrared and radio persists into the sub-mm for the continuum images of the quasar. We report the detection of CO (11-10) spectral line emission, which traces a region of compact gas around the quasar nucleus. This line emission also shows evidence of a flux-ratio anomaly between the merging lensed images that is consistent with those observed at other wavelengths, suggesting high-excitation CO can also provide a useful probe of substructures that is unaffected by microlensing or dust extinction. However, we do not detect the candidate dusty dwarf galaxy that was previously reported with this dataset, which we conclude is due to a noise artefact. Thus, the cause of the flux-ratio anomaly between the merging lensed images is still unknown. The composite compact and diffuse emission in this system suggest lensed quasar-starbursts will make excellent targets for detecting dark sub-haloes and testing models for dark matter.Comment: Accepted as MNRAS Lette

    A novel search for gravitationally lensed radio sources in wide-field VLBI imaging from the mJIVE-20 survey

    Get PDF
    We present a novel pilot search for gravitational lenses in the mJIVE-20 survey, which observed 2490324\,903 radio sources selected from FIRST with the VLBA at an angular resolution of 5 mas. We have taken the visibility data for an initial 36403\,640 sources that were detected by the mJIVE-20 observations and re-mapped them to make wide-field images, selecting fourteen sources that had multiple components separated by 100\geq100 mas, with a flux-ratio of 15\leq15:11 and a surface brightness consistent with gravitational lensing. Two of these candidates are re-discoveries of gravitational lenses found as part of CLASS. The remaining twelve candidates were then re-observed at 1.4 GHz and then simultaneously at 4.1 and 7.1 GHz with the VLBA to measure the spectral index and surface brightness of the individual components as a function of frequency. Ten were rejected as core-jet or core-hotspot(s) systems, with surface brightness distributions and/or spectral indices inconsistent with gravitational lensing, and one was rejected after lens modelling demonstrated that the candidate lensed images failed the parity test. The final lens candidate has an image configuration that is consistent with a simple lens mass model, although further observations are required to confirm the lensing nature. Given the two confirmed gravitational lenses in the mJIVE-20 sample, we find a robust lensing-rate of 11:(318±225318\pm225) for a statistical sample of 635 radio sources detected on mas-scales, which is consistent with that found for CLASS.Comment: 31 pages, 22 figures; accepted for publication in MNRA

    Resolving on 100 pc scales the UV-continuum in Lyman-α\alpha emitters between redshift 2 to 3 with gravitational lensing

    Get PDF
    We present a study of seventeen LAEs at redshift 2<z<<z<3 gravitationally lensed by massive early-type galaxies (ETGs) at a mean redshift of approximately 0.5. Using a fully Bayesian grid-based technique, we model the gravitational lens mass distributions with elliptical power-law profiles and reconstruct the UV-continuum surface brightness distributions of the background sources using pixellated source models. We find that the deflectors are close to, but not consistent with isothermal models in almost all cases, at the 2σ2\sigma-level. We take advantage of the lensing magnification (typically μ\mu\simeq 20) to characterise the physical and morphological properties of these LAE galaxies. From reconstructing the ultra-violet continuum emission, we find that the star-formation rates range from 0.3 to 8.5 M_{\odot} yr1^{-1} and that the galaxies are typically composed of several compact and diffuse components, separated by 0.4 to 4 kpc. Moreover, they have peak star-formation rate intensities that range from 2.1 to 54.1 M_{\odot} yr1^{-1} kpc2^{-2}. These galaxies tend to be extended with major axis ranging from 0.2 to 1.8 kpc (median 561 pc), and with a median ellipticity of 0.49. This morphology is consistent with disk-like structures of star-formation for more than half of the sample. However, for at least two sources, we also find off-axis components that may be associated with mergers. Resolved kinematical information will be needed to confirm the disk-like nature and possible merger scenario for the LAEs in the sample.Comment: 19 pages, 7 figures, accepted for publication on MNRA

    ALMA imaging of SDP.81 - I. A pixelated reconstruction of the far-infrared continuum emission

    Get PDF
    We present a sub-50 pc-scale analysis of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data. We model both the mass distribution of the gravitational lensing galaxy and the pixelated surface brightness distribution of the background source using a novel Bayesian technique that fits the data directly in visibility space. We find the 1 and 1.3 mm dust emission to be magnified by a factor of u_tot = 17.6+/-0.4, giving an intrinsic total star-formation rate of 315+/-60 M_sol/yr and a dust mass of 6.4+/-1.5*10^8 M_sol. The reconstructed dust emission is found to be non-uniform, but composed of multiple regions that are heated by both diffuse and strongly clumped star-formation. The highest surface brightness region is a ~1.9*0.7 kpc disk-like structure, whose small extent is consistent with a potential size-bias in gravitationally lensed starbursts. Although surrounded by extended star formation, with a density of 20-30+/-10 M_sol/yr/kpc^2, the disk contains three compact regions with densities that peak between 120-190+/-20 M_sol/yr/kpc^2. Such star-formation rate densities are below what is expected for Eddington-limited star-formation by a radiation pressure supported starburst. There is also a tentative variation in the spectral slope of the different star-forming regions, which is likely due to a change in the dust temperature and/or opacity across the source.Comment: MNRAS accepted 2015 April 1

    ALMA imaging of SDP.81 - II. A pixelated reconstruction of the CO emission lines

    Get PDF
    We present a sub-100 pc-scale analysis of the CO molecular gas emission and kinematics of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data and a visibility-plane lens reconstruction technique. We find clear evidence for an excitation dependent structure in the unlensed molecular gas distribution, with emission in CO (5-4) being significantly more diffuse and structured than in CO (8-7). The intrinsic line luminosity ratio is r_8-7/5-4 = 0.30 +/- 0.04, which is consistent with other low-excitation starbursts at z ~ 3. An analysis of the velocity fields shows evidence for a star-forming disk with multiple velocity components that is consistent with a merger/post-coalescence merger scenario, and a dynamical mass of M(< 1.56 kpc) = 1.6 +/- 0.6 x 10^10 M_sol . Source reconstructions from ALMA and the Hubble Space Telescope show that the stellar component is offset from the molecular gas and dust components. Together with Karl G. Jansky Very Large Array CO (1-0) data, they provide corroborative evidence for a complex ~2 kpc-scale starburst that is embedded within a larger ~15 kpc structure.Comment: MNRAS accepted, 6th July 201

    The final candidate from the JVAS/CLASS search for 6 arcsec to 15 arcsec image separation lensing

    Get PDF
    A search for 6 arcsec to 15 arcsec image separation lensing in the Jodrell Bank-Very Large Array Astrometric Survey (JVAS) and the Cosmic Lens All-Sky Survey (CLASS) by Phillips et al. found thirteen group and cluster gravitational lens candidates. Through radio and optical imaging and spectroscopy, Phillips et al. ruled out the lensing hypothesis for twelve of the candidates. In this paper, new optical imaging and spectroscopy of J0122+427, the final lens candidate from the JVAS/CLASS 6 arcsec to 15 arcsec image separation lens search, are presented. This system is found not to be a gravitational lens, but is just two radio-loud active galactic nuclei that are separated by ~10 arcsec on the sky and are at different redshifts. Therefore, it is concluded that there are no gravitational lenses in the JVAS and CLASS surveys with image separations between 6 arcsec to 15 arcsec. This result is consistent with the expectation that group- and cluster-scale dark matter haloes are inefficient lenses due to their relatively flat inner density profiles.Comment: 5 pages, 3 figures, 2 tables, accepted for publication in MNRA

    The Cosmic Lens All-Sky Survey parent population - I. Sample selection and number counts

    Get PDF
    We present the selection of the Jodrell Bank Flat-spectrum (JBF) radio source sample, which is designed to reduce the uncertainties in the Cosmic Lens All-Sky Survey (CLASS) gravitational lensing statistics arising from the lack of knowledge about the parent population luminosity function. From observations at 4.86 GHz with the Very Large Array, we have selected a sample of 117 flat-spectrum radio sources with flux densities greater than 5 mJy. These sources were selected in a similar manner to the CLASS complete sample and are therefore representative of the parent population at low flux densities. The vast majority (~90 per cent) of the JBF sample are found to be compact on the arcsecond scales probed here and show little evidence of any extended radio jet emission. Using the JBF and CLASS complete samples we find the differential number counts slope of the parent population above and below the CLASS 30 mJy flux density limit to be -2.07+/-0.02 and -1.96+/-0.12, respectively.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    On the efficient Monte Carlo implementation of path integrals

    Full text link
    We demonstrate that the Levy-Ciesielski implementation of Lie-Trotter products enjoys several properties that make it extremely suitable for path-integral Monte Carlo simulations: fast computation of paths, fast Monte Carlo sampling, and the ability to use different numbers of time slices for the different degrees of freedom, commensurate with the quantum effects. It is demonstrated that a Monte Carlo simulation for which particles or small groups of variables are updated in a sequential fashion has a statistical efficiency that is always comparable to or better than that of an all-particle or all-variable update sampler. The sequential sampler results in significant computational savings if updating a variable costs only a fraction of the cost for updating all variables simultaneously or if the variables are independent. In the Levy-Ciesielski representation, the path variables are grouped in a small number of layers, with the variables from the same layer being statistically independent. The superior performance of the fast sampling algorithm is shown to be a consequence of these observations. Both mathematical arguments and numerical simulations are employed in order to quantify the computational advantages of the sequential sampler, the Levy-Ciesielski implementation of path integrals, and the fast sampling algorithm.Comment: 14 pages, 3 figures; submitted to Phys. Rev.
    corecore