We demonstrate that the Levy-Ciesielski implementation of Lie-Trotter
products enjoys several properties that make it extremely suitable for
path-integral Monte Carlo simulations: fast computation of paths, fast Monte
Carlo sampling, and the ability to use different numbers of time slices for the
different degrees of freedom, commensurate with the quantum effects. It is
demonstrated that a Monte Carlo simulation for which particles or small groups
of variables are updated in a sequential fashion has a statistical efficiency
that is always comparable to or better than that of an all-particle or
all-variable update sampler. The sequential sampler results in significant
computational savings if updating a variable costs only a fraction of the cost
for updating all variables simultaneously or if the variables are independent.
In the Levy-Ciesielski representation, the path variables are grouped in a
small number of layers, with the variables from the same layer being
statistically independent. The superior performance of the fast sampling
algorithm is shown to be a consequence of these observations. Both mathematical
arguments and numerical simulations are employed in order to quantify the
computational advantages of the sequential sampler, the Levy-Ciesielski
implementation of path integrals, and the fast sampling algorithm.Comment: 14 pages, 3 figures; submitted to Phys. Rev.