27 research outputs found

    Genetic indicators of iron limitation in wild populations of \u3cem\u3eThalassiosira oceanica\u3c/em\u3e from the northeast Pacific Ocean

    Get PDF
    Assessing the iron (Fe) nutritional status of natural diatom populations has proven challenging as physiological and molecular responses can differ in diatoms of the same genus. We evaluated expression of genes encoding flavodoxin (FLDA1) and an Fe-starvation induced protein (ISIP3) as indicators of Fe limitation in the marine diatom Thalassiosira oceanica. The specificity of the response to Fe limitation was tested in cultures grown under Fe- and macronutrient-deficient conditions, as well as throughout the diurnal light cycle. Both genes showed a robust and specific response to Fe limitation in laboratory cultures and were detected in small volume samples collected from the northeast Pacific, demonstrating the sensitivity of this method. Overall, FLDA1 and ISIP3 expression was inversely related to Fe concentrations and offered insight into the Fe nutritional health of T. oceanica in the field. As T. oceanica is a species tolerant to low Fe, indications of Fe limitation in T. oceanica populations may serve as a proxy for severe Fe stress in the overall diatom community. At two shallow coastal locations, FLD1A and ISIP3 expression revealed Fe stress in areas where dissolved Fe concentrations were high, demonstrating that this approach may be powerful for identifying regions where Fe supply may not be biologically available

    Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability

    Get PDF
    Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron-limitation of Prochlorococcus cell division rates in these regions has been demonstrated. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady-state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially-expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Biological Oceanography)United States. Office of Naval Research (ONR Young Investigator Award)National Science Foundation (U.S.) (Chemical Oceanography)National Science Foundation (U.S.) (Environmental Genomics grants

    Optimization of iron-dependent cyanobacterial (Synechococcus, Cyanophyceae) bioreporters to measure iron bioavailability

    Full text link
    Complex chemistry and biological uptake pathways render iron bioavailability particularly difficult to assess in natural waters. Bioreporters are genetically modified organisms that are useful tools to directly sense the bioavailable fractions of solutes. In this study, three cyanobacterial bioreporters derived from Synechococcus PCC 7942 were examined for the purpose of optimizing the response to bioavailable Fe. Each bioreporter uses a Fe-regulated promoter (isiAB, irpA and mapA), modulated by distinct mechanisms under Fe deficiency, fused to a bacterial luciferase (luxAB). In order to provide a better understanding of the way natural conditions may affect the ability of the bioreporter to sense iron bioavailability, the effect of relevant environmental parameters on the response to iron was assessed. Optimal conditions (and limits of applicability) for the use of these bioreporters on the field were determined to be: a 12 h (12-24 h) exposure time, temperature of 15°C (15°C-22°C), photon flux density of 100 μmol photons·m-2·s-1 (37-200 μmol photons·m-2·s-1), initial biomass of 0.6-0.8 μg chlorophyll a (chl a)·L-1 (0.3-1.5 μg chl a·L-1) or approximately 105 bioreporter cells·mL-1, high phosphate (10 μM), and low micronutrients (absent). The measured luminescence was optimal with an exogenous addition of 60 μM aqueous decanal substrate allowing a 5 min reaction time in the dark before analysis. This study provides important considerations relating to the optimization in the use of bioreporters under field conditions that can be used for method development of other algal and cyanobacterial bioreporters in aquatic systems. © 2006 Phycological Society of America

    Induction of a CO2 Concentrating Mechanism in Starchless Mutant of Chlorella Pyrenoidosa

    No full text
    corecore