891 research outputs found
Ultrahigh energy neutrino scattering: an update
We update our estimates of charged and neutral current neutrino total cross
sections on isoscalar nucleons at ultrahigh energies using a global (x, Q^2)
fit, motivated by the Froissart bound, to the F_2 (electron-proton) structure
function utilizing the most recent analysis of the complete ZEUS and H1 data
sets from HERA I. Using the large Q^2, small Bjorken-x limits of the "wee"
parton model, we connect the ultrahigh energy neutrino cross sections directly
to the large Q^2, small-x extrapolation of our new fit, which we assume
saturates the Froissart bound. We compare both to our previous work, which
utilized only the smaller ZEUS data set, as well as to recent results of a
calculation using the ZEUS-S based global perturbative QCD parton distributions
using the combined HERA I results as input. Our new results substantiate our
previous conclusions, again predicting significantly smaller cross sections
than those predicted by extrapolating pQCD calculations to neutrino energies
above 10^9 GeV.Comment: 8 pages, 1 figure, 3 table
Decoupling the coupled DGLAP evolution equations: an analytic solution to pQCD
Using Laplace transform techniques, along with newly-developed accurate
numerical inverse Laplace transform algorithms, we decouple the solutions for
the singlet structure function and of the two
leading-order coupled singlet DGLAP equations, allowing us to write fully
decoupled solutions: F_s(x,Q^2)={\cal F}_s(F_{s0}(x), G_0(x)), G(x,Q^2)={\cal
G}(F_{s0}(x), G_0(x)). Here and are known
functions---found using the DGLAP splitting functions---of the functions
and , the chosen
starting functions at the virtuality . As a proof of method, we compare
our numerical results from the above equations with the published MSTW LO gluon
and singlet distributions, starting from their initial values at . Our method completely decouples the two LO distributions, at the same
time guaranteeing that both distributions satisfy the singlet coupled DGLAP
equations. It furnishes us with a new tool for readily obtaining the effects of
the starting functions (independently) on the gluon and singlet structure
functions, as functions of both and . In addition, it can also be
used for non-singlet distributions, thus allowing one to solve analytically for
individual quark and gluon distributions values at a given and , with
typical numerical accuracies of about 1 part in , rather than having to
evolve numerically coupled integral-differential equations on a two-dimensional
grid in , as is currently done.Comment: 6 pages, 2 figure
Effects of the Mobility-Fit Physical Activity Program on Strength and Mobility in Older Adults in Assisted Living: A Feasibility Study
Physical activity programs focusing on fall prevention often overlook upper-limb strength, which is important for transferring, balance recovery, and arresting a fall. We developed and evaluated a physical activity program, Mobility-Fit for older adults in Assisted Living (AL) that includes upper-limb strengthening, agility, coordination, and balance exercises. Thirty participants (85 ± 6 years) were recruited from two AL facilities; 15 were assigned to Mobility-Fit (three times/week, 45 min/session for 12 weeks) and 15 maintained usual care. Twenty-two participants (11 in each group) completed the study. We compared outcome changes between groups and interviewed participants and staff to explore the effectiveness and feasibility of the program. Among participants who attended Mobility-Fit, knee extension strength increased by 6%, reaction time decreased by 16%, and five-time sit-to-stand duration decreased by 15%. Conversely, participants in the usual care group had a 6% decrease in handgrip strength. Changes of these outcomes were significantly different between two groups (p < 0.05). Participants enjoyed the program and staff suggested some changes to improve attendance. Our results indicate that Mobility-Fit is feasible to deliver and beneficial for older adults in AL and may guide future clinical trials to evaluate the effectiveness of upper limb strengthening on safe mobility of older adults in care facilities
Age-related changes in afferent pathways and urothelial function in the male mouse bladder
Key points
•The prevalence of bladder conditions such as overactive bladder syndrome and urinary incontinence significantly increases with age, but how bladder function is altered by ageing is unclear.
•Sensory nerves together with the epithelial lining of the bladder known as the urothelium play a key role in mediating bladder function.
•In aged male mice we find a significant increase in natural bladder voiding, augmented afferent nerve firing during bladder filling and a significant increase in urothelial responses to purinergic receptor stimulation.
•This suggests that with ageing there is increased purinergic transmission in the mouse bladder which may lead to increased sensation and result in bladder hypersensitivity.
•These findings help us better understand how the function of the bladder may be affected by advancing age.
Abstract
The prevalence of lower urinary tract storage disorders such as overactive bladder syndrome and urinary incontinence significantly increase with age. Previous studies have demonstrated age-related changes in detrusor function and urothelial transmitter release but few studies have investigated how the urothelium and sensory pathways are affected. The aim of this study was to investigate the effect of ageing on urothelial-afferent signalling in the mouse bladder. Three-month-old control and 24-month-old aged male mice were used. In vivo natural voiding behaviour, sensory nerve activity, urothelial cell function, muscle contractility, transmitter release and gene and protein expression were measured to identify how all three components of the bladder (neural, contractile and urothelial) are affected by ageing. In aged mice, increased voiding frequency and enhanced low threshold afferent nerve activity was observed, suggesting that ageing induces overactivity and hypersensitivity of the bladder. These changes were concurrent with altered ATP and acetylcholine bioavailability, measured as transmitter overflow into the lumen, increased purinergic receptor sensitivity and raised P2X3 receptor expression in the urothelium. Taken together, these data suggest that ageing results in aberrant urothelial function, increased afferent mechanosensitivity, increased smooth muscle contractility, and changes in gene and protein expression (including of P2X3). These data are consistent with the hypothesis that ageing evokes changes in purinergic signalling from the bladder, and further studies are now required to fully validate this idea
Applications of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations to the combined HERA data on deep inelastic scattering
We recently derived explicit solutions of the leading-order
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations for the
evolution of the singlet structure function and the gluon
distribution using very efficient Laplace transform techniques. We
apply our results here to a study of the HERA data on deep inelastic
scattering as recently combined by the H1 and ZEUS groups. We use initial
distributions and fixed by a global fit
to the HERA data. From we obtain the singlet quark
distribution ---using small non-singlet quark distributions taken
from either the CTEQ6L or the MSTW2008LO analyses---evolve to arbitrary ,
and then convert the results to individual quark distributions. Finally, we
show directly from a study of systematic trends in a comparison of the evolved
with the HERA data, that the assumption of
leading-order DGLAP evolution is inconsistent with those data.Comment: 18 pages, 7 figures, version accepted for publication in PR
Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring
We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two plates with the helical axis perpendicular to the substrates. We fixed the director twist on one boundary and allow for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix expels quarter or half-turn twists, depending on the relative sizes of the strength of the surface potential and the bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large
- …