223 research outputs found
Chemotherapy-induced nausea and vomiting: A narrative review to inform dietetics practice
Chemotherapy-induced nausea and vomiting (CINV) are common nutrition-impact symptoms experienced by cancer patients. They exert a detrimental effect on dietary intake, risk of malnutrition and quality of life. While CINV are primarily managed with medication, dietitians play an important role in the management of CINV-related complications such as reduced dietary intake. This review discusses the burden of nausea and vomiting which cancer patients can experience, including its effect on quality of life, nutrition status, and treatment outcomes. Implications for dietetic practice include the need to explore the nature of reported symptoms, identify predisposing risk factors, and to consider the use of a variety of interventions that are individualised to the patient’s symptoms. There are little clinical data regarding effective dietetic interventions for nausea and vomiting. In summary, this review discusses dietetic-related issues surrounding CINV including the pathophysiology, risk factors, prevalence, and both pharmacological and dietetic treatment options
Evaluation of web-based flexible learning
Arts, Education & Law Group, School of Education and Professional StudiesFull Tex
Nonequilibrium and Nonlinear Dynamics in Geomaterials I : The Low Strain Regime
Members of a wide class of geomaterials are known to display complex and
fascinating nonlinear and nonequilibrium dynamical behaviors over a wide range
of bulk strains, down to surprisingly low values, e.g., 10^{-7}. In this paper
we investigate two sandstones, Berea and Fontainebleau, and characterize their
behavior under the influence of very small external forces via carefully
controlled resonant bar experiments. By reducing environmental effects due to
temperature and humidity variations, we are able to systematically and
reproducibly study dynamical behavior at strains as low as 10^{-9}. Our study
establishes the existence of two strain thresholds, the first, epsilon_L, below
which the material is essentially linear, and the second, epsilon_M, below
which the material is nonlinear but where quasiequilibrium thermodynamics still
applies as evidenced by the success of Landau theory and a simple macroscopic
description based on the Duffing oscillator. At strains above epsilon_M the
behavior becomes truly nonequilibrium -- as demonstrated by the existence of
material conditioning -- and Landau theory no longer applies. The main focus of
this paper is the study of the region below the second threshold, but we also
comment on how our work clarifies and resolves previous experimental conflicts,
as well as suggest new directions of research.Comment: 14 pages, 15 figure
The role of technology in the assessment of RE
A teacher has many aims, among them; they want a classroom where pupils are engaged in their learning and to have an easy and efficient way of measuring that learning. Aims such as these are also necessary for the teacher to have a safe and comfortable work environment, in which there is a reduction in workload. There is no manual of how to achieve this and if there were, it would likely have moderate application outside of the school environment in which it was created. This research aims to select some of the key themes that arise in trying to achieve effective means of assessing pupils’ understanding in RE as well as reducing the impact of excessive workloads upon teachers. The research will take place within my own school and therefore the findings will be applicable to others who teach in my school. It is anticipated that the findings will also be applicable to those who teach other subjects and in other schools
ON SCALING OF BRAKE TEST SAE J2522
Friction brakes represent the most important safety feature literally in all vehicles and their rigorous “friction testing” is usually performed on several platforms/scales and completed with field tests. Since friction and wear are system properties, it is not trivial to design “small scale” tests and to correlate data generated at different levels of testing complexity. Nevertheless, the economy of the brake materials development process could be improved, when interpretation of friction and wear test data is based on a deeper/proper understanding of physics and chemistry of ongoing friction phenomena. This contribution follows the two series previously presented at SAE Brake Colloquia and compares the data generated in the full-scale brake dynamometer SAE J 2522 performance test (Link Engineering 2800M dynamometer) with data generated in bench-top (small scale) friction tester (Bruker UMT) equipped with environmental chamber controlling temperature. Scaling laws of physics were adopted for design of the small-scale testing procedure, however, a different scaling philosophy as well as different friction materials were used when compared to the previously reported findings. Identical commercial OEM brake pad samples containing biodegradable environmentally friendly fibers and commercial OEM cast iron rotors were used in both dynamometer and scaled-down bench-top friction tests. Friction and wear surfaces/mechanisms were studied by using scanning electron microscopy (Quanta FEG 450 by FEI) equipped with the energy dispersive X-ray microanalysis (Inca System), and 3D optical microscope (NPFLEX by Bruker). Major conclusions proposed for this study can be summarized as follows: 1) Proper scaling by using physics principles allows for reasonable correlation of dynamometer and bench-top test data, although the results differentiate, particularly during fade and high temperature tests. These findings further support the previously published data and indicate that differences in scaling philosophy neither the types of tested materials have considerable impact on the generated data. 2) It is very important to properly select representative pad samples, as their size is considerably smaller compared to full pads. When the identical rotor materials are used, the repeatability of data is excellent and the sensitivity to typical differences of the bulk microstructure of cast iron is minimal. 3) When the testing results generated on dynamometer and bench tester matched well. the friction surfaces of full pads tested in dynamometer and the friction surfaces of small pad samples exhibited identical topography and chemistry
Adsorption of bovine serum albumin on amorphous carbon surfaces studied with dip pen nanolithography
The RAPID-CTCA trial (Rapid Assessment of Potential Ischaemic Heart Disease with CTCA) - a multicentre parallel-group randomised trial to compare early computerised tomography coronary angiography versus standard care in patients presenting with suspected or confirmed acute coronary syndrome: study protocol for a randomised controlled trial.
BACKGROUND: Emergency department attendances with chest pain requiring assessment for acute coronary syndrome (ACS) are a major global health issue. Standard assessment includes history, examination, electrocardiogram (ECG) and serial troponin testing. Computerised tomography coronary angiography (CTCA) enables additional anatomical assessment of patients for coronary artery disease (CAD) but has only been studied in very low-risk patients. This trial aims to investigate the effect of early CTCA upon interventions, event rates and health care costs in patients with suspected/confirmed ACS who are at intermediate risk. METHODS/DESIGN: Participants will be recruited in about 35 tertiary and district general hospitals in the UK. Patients ≥18 years old with symptoms with suspected/confirmed ACS with at least one of the following will be included: (1) ECG abnormalities, e.g. ST-segment depression >0.5 mm; (2) history of ischaemic heart disease; (3) troponin elevation above the 99(th) centile of the normal reference range or increase in high-sensitivity troponin meeting European Society of Cardiology criteria for 'rule-in' of myocardial infarction (MI). The early use of ≥64-slice CTCA as part of routine assessment will be compared to standard care. The primary endpoint will be 1-year all-cause death or recurrent type 1 or type 4b MI at 1 year, measured as the time to such event. A number of secondary clinical, process and safety endpoints will be collected and analysed. Cost effectiveness will be estimated in terms of the lifetime incremental cost per quality-adjusted life year gained. We plan to recruit 2424 (2500 with ~3% drop-out) evaluable patients (1212 per arm) to have 90% power to detect a 20% versus 15% difference in 1-year death or recurrent type 1 MI or type 4b MI, two-sided p < 0.05. Analysis will be on an intention-to-treat basis. The relationship between intervention and the primary outcome will be analysed using Cox proportional hazard regression adjusted for study site (used to stratify the randomisation), age, baseline Global Registry of Acute Coronary Events score, previous CAD and baseline troponin level. The results will be expressed as a hazard ratio with the corresponding 95% confidence intervals and p value. DISCUSSION: The Rapid Assessment of Potential Ischaemic Heart Disease with CTCA (RAPID-CTCA) trial will recruit 2500 participants across about 35 hospital sites. It will be the first study to investigate the role of CTCA in the early assessment of patients with suspected or confirmed ACS who are at intermediate risk and including patients who have raised troponin measurements during initial assessment. TRIAL REGISTRATION: ISRCTN19102565 . Registered on 3 October 2014. ClinicalTrials.gov: NCT02284191
Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism.
Differences in cortical morphology-in particular, cortical volume, thickness and surface area-have been reported in individuals with autism. However, it is unclear what aspects of genetic and transcriptomic variation are associated with these differences. Here we investigate the genetic correlates of global cortical thickness differences (ΔCT) in children with autism. We used Partial Least Squares Regression (PLSR) on structural MRI data from 548 children (166 with autism, 295 neurotypical children and 87 children with ADHD) and cortical gene expression data from the Allen Institute for Brain Science to identify genetic correlates of ΔCT in autism. We identify that these genes are enriched for synaptic transmission pathways and explain significant variation in ΔCT. These genes are also significantly enriched for genes dysregulated in the autism post-mortem cortex (Odd Ratio (OR) = 1.11, Pcorrected 10-14), driven entirely by downregulated genes (OR = 1.87, Pcorrected 10-15). We validated the enrichment for downregulated genes in two independent data sets: Validation 1 (OR = 1.44, Pcorrected = 0.004) and Validation 2 (OR = 1.30; Pcorrected = 0.001). We conclude that transcriptionally downregulated genes implicated in autism are robustly associated with global changes in cortical thickness variability in children with autism
Cardiopulmonary exercise testing in heart failure with preserved ejection fraction: a game-changer for patients.
- …
