4,707 research outputs found
The Building Breathes Together
The Building Breathes Together presents a realm of speculative, industrial habitation and alchemical production. In my instillation, I look to raise questions surrounding romantic notions of production and utility. The work introduces a surreal and haunted space of decomposition and regeneration
TumorML: Concept and requirements of an in silico cancer modelling markup language
This paper describes the initial groundwork carried out as part of the European Commission funded Transatlantic Tumor Model Repositories project, to develop a new markup language for computational cancer modelling, TumorML. In this paper we describe the motivations for such a language, arguing that current state-of-the-art biomodelling languages are not suited to the cancer modelling domain. We go on to describe the work that needs to be done to develop TumorML, the conceptual design, and a description of what existing markup languages will be used to compose the language specification
Time Series Analysis in Flight Flutter Testing at the Air Force Flight Test Center: Concepts and Results
The Air Force Flight Test Center (AFFTC) flight flutter facility is described. Concepts of using a minicomputer-based time series analyzer and a modal analysis software package for flight flutter testing are examined. The results of several evaluations of the software package are given. The reasons for employing a minimum phase concept in analyzing response only signals are discussed. The use of a Laplace algorithm is shown to be effective for the modal analysis of time histories in flutter testing. Sample results from models and flight tests are provided. The limitations inherent in time series analysis methods are discussed, and the need for effective noise reduction techniques is noted. The use of digital time series analysis techniques in flutter testing is shown to be fast, accurate, and cost effective
The effect of training with weightlifting catching or pulling derivatives on squat jump and countermovement jump forceātime adaptations
The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) forceātime curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ forceātime curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives
- ā¦