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Abstract 
 

As the power of computing increases, public key cryptography adapts by increasing 

the size of the prime numbers used by the underlying cryptographic algorithms. 

Public-key algorithms have been in use since the 1970s, but how long can these 

algorithms remain secure? In light of the emergence of quantum computing together 

with the prospect that the Riemann Hypothesis has been proved, this paper will 

investigate the possible impact on the security of current encryption algorithms.  

  
If these theoretical technological advancements become reality, what will be necessary 

to maintain the security of the global system? It is imperative that the security of 

communication is not compromised. Therefore to overcome the problem of the 

exponential increase in computational power of quantum computing is to use it to 

bolster the potential insecurities of current algorithms by developing a cryptographic 

system based on quantum mechanics.  

 

The Quantum Key Exchange approach demonstrates the strength of such a system. It 

is believed from our current understanding of quantum physics that this method is 

very secure and that an eavesdropper cannot intercept the key without both sender and 

receiver having knowledge that the key had been compromised, as the polarization 

will have been altered. The limitation with this system is if the intruder has connected 

to the channel before the communication has begun, neither sender nor receiver will 

be aware of the interception. 

 

Current encryption algorithms will not remain secure permanently; therefore it is 

essential that to maintain a secure system that cryptology constantly evolve. There are 

many technologies that could be used in cryptology but either of the advancements 

above could destroy the safeguards of current methods. 

 

1.  Introduction 
 

As the power of computing increases, public key cryptography adapts by increasing 

the size of the prime numbers used by the underlying cryptographic algorithms. But 

how secure are prime numbers? The problem is finding a way of encrypting 

information that will be secure in the future as well as today. 

     Public-key algorithms have been in use since the 1970s, and primes have been 

applied to the area of cryptology for even longer, so just how long will they remain 

secure? With the emergence of ideas such as quantum computing and the possibility 

that someone may have proved the Riemann Hypothesis, the current methods of 

encryption may soon be dated. Even if the current methods of encryption become 

obsolete, why should anyone be concerned? Unfortunately, the problem is now one 
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greater than just academic interest. With the rise of the Internet, over the last 20 years, 

these encryption technologies have been incorporated into the whole infrastructure of 

the global economy. 

     From individual purchases in an online store, to global inter-bank transactions, our 

society and all the information underpinning it, is now stored in a digital format 

interconnected by what has been dubbed the Digital Nervous System. With this digital 

evolution, any compromise of the current security mechanisms could cause 

catastrophe on a global scale. 

     The intention of this paper is to investigate the encryption algorithms in current 

use, and to explore the mathematical theories underpinning them. From this 

investigation we should be able to analyse how secure these algorithms are, and how 

vulnerable these current technologies would become if future developments 

materialise. 

 

2.  Security Algorithms 
 

There are two common categories of encryption algorithms symmetric and 

asymmetric. However, symmetric algorithms are outside the scope of this paper, 

therefore the focus is on asymmetric public-key technologies. 

 

 

2.1  Public Key Cryptography 

 

The basic idea of public key algorithms is that both the sender (normally referred to as 

Alice) and the receiver (Bob) create a public key (Ka +, Kb +), which is made publicly 

available, and private keys (Ka -, Kb -), which are kept secret. To make these keys 

secure, they contain 30 or more digits. Alice encrypts the message with Bob’s public 

key. The only way to decrypt, and therefore read the message, is to use Bob’s private 

key; this is denoted by [23]:  

 
Encryption     Kb

+
(M) 

Decryption  Kb
-
(Kb

+
(M)) = M  

2.2 RSA 

 

One of the most common public key algorithms is called the RSA (Rivest, Shamir, 

Adleman) algorithm, which uses prime factorisation in a trapdoor one-way function 

[25]. To assess how secure this and other similar algorithms are, we first need to 

briefly cover the mathematical theories they are based on.  

 
Primes are used to created keys by the following computation [3]: 
  
Find 2 large (>30 digits long) primes, called p and q 
  
 n = pq and 

 (Z) = (p-1).(q-1) 
 
 Define a private key d and a public key e, such that: 
  
 d * e = 1 mod (Z) 
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 Prime number based public key encryption, such as RSA, is based on the assumption 

that it is relatively simple to find 2 large prime numbers, but it is very difficult to 

factor a large composite into its prime factorisation form [3]. Based on this 

assumption, public key algorithms appear very secure. Moreover, if an intruder 

(Trudy) cannot acquire the private key, it would take a long time (somewhere around 

the age of the universe) and a significant amount of computational power to undertake 

a brute force decryption [21].  

        This method of using prime numbers for factorisation has never been proved, but 

it has been accepted as secure due to a negative proof, i.e. in most mathematicians’ 

professional opinions, that is, because there is no known proven method to factoring 

prime numbers, the resulting keys are for all practical purposes unbreakable. The big 

problem with a negative proof, is just because we are currently unable to break the 

prime number based public key encryption, we can’t assume that it cannot be done; 

therefore a negative proof, albeit statistically favourable, is not a proof. Concerns have 

arisen following two recent developments that could make PKI algorithms vulnerable; 

the possible proof of the Riemann Hypothesis, together with the evolution of quantum 

computing. 

 

3. Riemann Hypothesis 

 

This mathematical hypothesis was conjectured by Riemann in 1859, and states that all 

the nontrivial (complex) zeros  of (s) lying in the critical strip 0 < Re(s) < 1 must lie 

on the critical line Re(s)=½, that is, =½+it, where  denotes a nontrivial zero of (s). 

[24]. Basically, the proposed formula calculates the number of primes less than a given 

number. Until this theory it was suggested primes were just scattered with no apparent 

pattern among the whole numbers. If Riemann’s conjecture is correct it could have 

great implications for the way we encrypt information, as the mathematics 

surrounding the solution could reveal quicker ways to factorise the numbers. If 

correct, the hypothesis can be diagrammatically shown as in figure 1. The position of 

the complex zeros can be seen slightly more easily by plotting the contours of zero 

real (red) and imaginary (blue) parts. The zeros (indicated as black dots) occur where 

the curves intersect [24].  

       As this hypothesis has not been proved or disproved (at least not publicly) 

although, a Purdue University mathematician, Louis De Branges, claims to have 

proven the Riemann hypothesis [8]. This is likely to take several years to confirm as 

the mathematical community has to analyse the proof and accept it as correct, but it is 

quite likely that the cryptology experts will, in the not too distant future, need to find a 

new way of encrypting data. There is the possibility that this hypothesis is never 

proven, or that even if is correct, it does not follow that computers will be able to 

factorise numbers faster. This is not to say that our current method of security is 

timeless. Another technology on the horizon is that of ‘Quantum Computing’, which 

could yield the power to crack a public key cryptographic system in a relatively short 

time using a brute force attack (based on current claims of the power available). 

     To assess the impact that quantum computers could have, we need to review the 

basic ideas behind them. A quantum computer works by manipulating atoms (or light) 

instead of silicone. The data is represented either by two different polarisations of 

light, or two different electronic states of an atom. Quantum mechanics is the area of 

physics seeking to understand events occurring at the atomic level. Quantum 

mechanics dictates that as well as the two distinct electronic states that an atom can 

have, the atom can also be under the effect of ‘superposition’, which basically means 

that the atom can be in two electronic states at the same time. In the area of 

computing, this equates to each quantum bit, called a qubit, being able to be both a 1 

and a 0 [1]. 
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     This idea of superposition comes from experiments that look at the behaviour of 

light, where a photon can take 2 paths at once [4]. Superposition was also the basis for 

one of history’s most intriguing, puzzles –Schrödinger’s Cat. This involved the idea of 

putting a (hypothetical) cat in a box, and if the test atom decayed, the box would be 

filled with a lethal gas and the cat would die, and if the atom did not decay the gas 

would not be released and therefore the cat would live. However, according to 

superposition this atom could be in both a state of decay AND a state of non-decay, 

therefore the cat would be in a state of alive and dead at the same time. 

     As this does not happen (cats being both dead and alive in the same moment) some 

physicists, including Einstein, proposed that there were some ‘hidden variables’, but 

John Bell later ruled out most of these in 1964. The only ‘hidden variables’ that were 

not ruled out were non-local variables, which meant they could act instantaneously 

across a distance. 

     This interaction between particles is known as quantum entanglement with changes 

of state in one particle resulting in complimentary and instantaneous changes in the 

other particle [12]. Entanglement has lead to 2 further theories; quantum information 

theory, which implies that information, can travel at speeds faster than the speed of 

light, and quantum teleportation. From quantum teleportation, Bennett et al [5] 

showed the following: 

 

If both Alice and Bob had one of 2 particles that are entangled 

together a quantum state can be transmitted from A to B. [5].  

 

     If this were proven to be true, and manageable, this could revolutionise the way 

communication is carried out! This is outside the scope of this paper, however, the 

idea of superposition can be continued further. A standard computer with a set of data, 

say a byte in size, 8 bits, can represent one of a maximum of 256 possible numbers; 

with a quantum computer, 8 qubits can represent all the 256 possible numbers at once! 

With this exponential increase in computational power, it is not hard to see that a time 

consuming task, such as factorisation, could be completed in a reasonable time with a 

quantum computer.  

 

4. The way forward 
 

One way that could provide a means of encryption that is secure against both the 

potentially flawed mathematics postulated by the Riemann hypothesis, and the 

extreme computational power of Quantum Computing, would be to use a 

cryptographic system based on quantum mechanics. There are already some basic 

options available in the field of Quantum Cryptography, predominantly around the 

area of Quantum 

     Key Exchange (for example products made by Magiq); this approach offers a very 

secure communication channel, however, this is currently very expensive due to each 

key channel requiring a dedicated optical fibre, and has a low data rate for technical 

reasons. However, due to our current understanding of the laws of Quantum Physics, 

this is very secure as there is apparently no way an eavesdropper, even with unlimited 

computing power, could intercept the key without both sender and receiver knowing 

that the key was compromised. To understand why this is so secure, we first have to 

look at how this method works. A quantum system consists of a transmitter, a 

receiver, and a quantum channel through which the polarised photons can be sent. [6]. 

These polarised photons can have 4 different polarisations:  

0°, 45°, 90°, 135° which are defined as        ,      ,   ,     respectively 
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     The receiver can either distinguish between the rectilinear polarisations (→,↑) or 

between the diagonal polarisations (   ,   ) at one time. A good example of how this 

could be used to send a key, is by using a quantum version of the Diffie-Hellman key 

exchange/distribution system (proposed by Bennett and Brassard in 1984) as shown 

below: 

1. Alice uses the transmitter to send a series of random photons with different 

polarisations to Bob, for example: 

 

 

 

2. Bob then uses the receiver to measure the polarisations, recording the results 

(keeping them secret):  

 

 

3. Bob (publicly) tells Alice the type of measurements he made, and Alice 

confirms which of the measurements were correct: 

 

                           -    -          -      -   

 

4. Alice and Bob translate all cases where Bob observed the correct polarisation type, 

into bits – these bits then form the key:  
                                        

1     1    1        0        1 
Where        and     = 1,      and           – 0 

5. Using this key, Alice can now encrypt the message for Bob using a classic public 

key algorithm (this would involve a larger number of photons to be able to create a 

secure enough key) [3]. 

     This is secure from eavesdroppers, as even if they could measure the photons, they 

could not do this without altering the polarisation, therefore alerting Alice and Bob 

that the channel has been compromised. 

 

5. Conclusion 

 

The main problem with the above proposed quantum cryptography based solution is 

that if a man-in-the-middle attacker, Mallory, managed to connect to the quantum 

channel before Alice and Bob began communication, he could impersonate Alice and 

Bob, i.e. tell Alice he is Bob, and tell Bob he is Alice, and therefore would not have 

the problem of intercepting the photons and changing the polarity. Mallory could then 

in theory establish a quantum key exchange with both Alice and Bob, allowing 

Mallory to read a message from Alice, and then encrypt this message using the key 

agreed with Bob. Using this technique it is entirely possible that neither Alice nor Bob 

will ever know there was is a problem. This situation, although unlikely, is possible 

and should be investigated; however, one possible solution may be procedural rather 

than trying to solve it by modifying the algorithm. A much more significant point to 

be made about a quantum computing solution is that quantum computing is still only 

theoretical, in that a quantum computer is only experimental. Although it is only a 

matter of time as the physics behind it have been proven (to a point) and it is now just 

an engineering problem to be overcome (managing individual photons, and creating 

entangled atoms that are stable enough to be useful). However, it will still be some 

years before this would be widely available to the public. In the meantime, the 

Riemann Hypothesis could be proved, so realistically we need a more achievable 

method of encryption using existing technologies. One possible solution would be to 
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utilise biometric data, such as a retinal scan into the key, but this solution is out of the 

scope of this report. 

     We cannot be sure what will occur in the future the Riemann Hypothesis maybe be 

disproved and that quantum computing could be unachievable, which would result in 

prime numbers remaining secure. Even if these two particular issues do not destroy 

current encryption methods, primes are going to be made insecure at some point, 

therefore cryptology needs to keep evolving by investigating new areas. 

     In conclusion, the area of encryption and security has been dependant upon the 

security of primes, and in order not to have a single point of weakness security needs 

some revolutionary ‘out-of-the-box’ ideas giving viable alternatives to the current 

methodologies and logic. 
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     Figure 1. Riemann Hypothesis [24] 

 

The position of the complex zeros can be seen slightly more easily by plotting the 

contours of zero real (red) and imaginary (blue) parts. The zeros (indicated as black 

dots) occur where the curves intersect. [24]. 
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