233 research outputs found

    Patient factors to target for elimination of mother-to-child transmission of HIV

    Get PDF
    Background: There is great impetus to achieve elimination of mother-to-child transmission of HIV (eMTCT) by 2015, and part of this is to identify factors to target to achieve the goal. This study thus identified key patient factors for MTCT in a high HIV prevalence setting in Johannesburg, South Africa. Between November 2010 and May 2012, we conducted a case-control study among HIV-infected women with HIV-infected (cases) and uninfected (controls) infants diagnosed around six weeks of age as part of routine, early infant diagnosis. Mothers and infants were identified through registers in six healthcare facilities that provide antenatal, postpartum and HIV care. Structured interviews were conducted with a focus on history of HIV infection, antenatal, intrapartum and immediate postpartum management of the mother-infant pair. Patient-related risk factors for MTCT were identified. Results: A total of 77 women with HIV-infected infants and 154 with -uninfected infants were interviewed. Among HIV-infected cases, 13.0% of the women knew their HIV status prior to conception, and 83.1% reported their pregnancies as unplanned. Antenatal antiretroviral coverage was high in the control group - only 1/154 (0.7%) reported receiving no prophylaxis or treatment compared with 17/74 (22.9%) of cases. In multivariate analysis, key patient-related risks for HIV transmission were: unknown HIV status prior to conception (adjusted odds ratio [AOR] = 6.6; 95% CI = 2.4 - 18.4; p < 0.001); accessing antenatal care after 20 weeks gestation (AOR = 4.3; 95% CI = 2.0 - 9.3; p < 0.001); less than 12 years of formal education (AOR = 3.4; 95% CI = 1.6 - 7.5; p = 0.002); and unplanned pregnancy (AOR = 2.7; 95% CI = 1.2 to 6.3; p = 0.022). Mean age at first HIV test was 6.6 weeks (SD = 3.5) for infants who were diagnosed as HIV-infected, and the mean age at antiretroviral treatment initiation was 10.8 weeks (SD = 4.4). HIV-uninfected infants were diagnosed at a mean age of 6.0 weeks (SD = 0.2). Conclusions: Undiagnosed maternal HIV infection prior to conception, unplanned pregnancies, delays in accessing antenatal care, and low levels of education were the most significant patient risk factors associated with MTCT. While the emphasis has been on increasing availability and coverage of efficacious antiretroviral regimens, and strengthening health systems within eMTCT initiatives, there is a need to also address patient-related factors if we are to achieve eMTCT goals

    Implementing an application programming interface for PROMIS measures at three medical centers

    Get PDF
    BACKGROUND: There is an increasing body of literature advocating for the collection of patient-reported outcomes (PROs) in clinical care. Unfortunately, there are many barriers to integrating PRO measures, particularly computer adaptive tests (CATs), within electronic health records (EHRs), thereby limiting access to advances in PRO measures in clinical care settings. OBJECTIVE: To address this obstacle, we created and evaluated a software integration of an Application Programming Interface (API) service for administering and scoring Patient-Reported Outcomes Measurement Information System (PROMIS) measures with the EHR system. METHODS: We created a RESTful API and evaluated the technical feasibility and impact on clinical workflow at three academic medical centers. RESULTS: Collaborative teams (i.e., clinical, information technology [IT] and administrative staff) performed these integration efforts addressing issues such as software integration as well as impact on clinical workflow. All centers considered their implementation successful based on the high rate of completed PROMIS assessments (between January 2016 and January 2021) and minimal workflow disruptions. CONCLUSION: These case studies demonstrate not only the feasibility but also the pathway for the integration of PROMIS CATs into the EHR and routine clinical care. All sites utilized diverse teams with support and commitment from institutional leadership, initial implementation in a single clinic, a process for monitoring and optimization, and use of custom software to minimize staff burden and error

    Design and reality : continuous-flow accelerator mass spectrometry (CFAMS)

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 (2011): 3176–3179, doi:10.1016/j.nimb.2011.04.019.In 2007 we published the design of a novel accelerator mass spectrometry (AMS) system capable of analyzing gaseous samples injected continuously into a microwave plasma gas ion source. Obvious advantages of such a system are drastically reduced processing times and avoidance of potentially contaminating chemical preparation steps. Another paper in these proceedings will present the progress with the development of the microwave gas ion source that has since been built and tested at the National Ocean Sciences AMS Facility in Woods Hole. In this paper we will review the original design and present updates, reflecting our recent encouraging experience with the system. A simple summary: large acceptance ion beam optics design is beneficial to accelerator mass spectrometry in general, but essential to AMS with plasma gas ion sources

    Implementation of an electronic monitoring and evaluation system for the antiretroviral treatment programme in the Cape Winelands district, South Africa: a qualitative evaluation

    Get PDF
    BACKGROUND: A pragmatic three-tiered approach to monitor the world's largest antiretroviral treatment (ART) programme was adopted by the South African National Department of Health in 2010. With the rapid expansion of the programme, the limitations of the paper-based register (tier 1) were the catalyst for implementation of the stand-alone electronic register (tier 2), which offers simple digitisation of the paper-based register. This article engages with theory on implementation to identify and contextualise enabling and constraining factors for implementation of the electronic register, to describe experiences and use of the register, and to make recommendations for implementation in similar settings where standardisation of ART monitoring and evaluation has not been achieved. METHODS: We conducted a qualitative evaluation of the roll-out of the register. This comprised twenty in-depth interviews with a diverse sample of stakeholders at facility, sub-district, and district levels of the health system. Facility-level participants were selected across five sub-districts, including one facility per sub-district. Responses were coded and analysed using a thematic approach. An implementation science framework guided interpretation of the data. Results & DISCUSSION: We identified the following seven themes: 1) ease of implementation, 2) perceived value of an electronic M&E system, 3) importance of stakeholder engagement, 4) influence of a data champion, 5) operational and logistical factors, 6) workload and role clarity, and 7) importance of integrating the electronic register with routine facility monitoring and evaluation. Interpreting our findings through an implementation theory enabled us to construct the scaffolding for implementation across the five facility-settings. This approach illustrated that implementation was not a linear process but occurred at two nodes: at the adoption of the register for roll-out, and at implementation at facility-level. CONCLUSION: In this study we found that relative advantage of an intervention and stakeholder engagement are critical to implementation. We suggest that without these aspects of implementation, formative and summative outcomes of implementation at both the adoption and coalface stages of implementation would be negatively affected

    Rapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA4212, doi:10.1029/2011PA002174.Radiocarbon analyses of carbonate materials provide critical information for understanding the last glacial cycle, recent climate history and paleoceanography. Methods that reduce the time and cost of radiocarbon (14C) analysis are highly desirable for large sample sets and reconnaissance type studies. We have developed a method for rapid radiocarbon analysis of carbonates using a novel continuous-flow accelerator mass spectrometry (CFAMS) system. We analyzed a suite of deep-sea coral samples and compared the results with those obtained using a conventional AMS system. Measurement uncertainty is <0.02 Fm or 160 Ryr for a modern sample and the mean background was 37,800 Ryr. Radiocarbon values were repeatable and in good agreement with those from the conventional AMS system. Sample handling and preparation is relatively simple and the method offered a significant increase in speed and cost effectiveness. We applied the method to coral samples from the Eastern Pacific Ocean to obtain an age distribution and identify samples for further analysis. This paper is intended to update the paleoceanographic community on the status of this new method and demonstrate its feasibility as a choice for rapid and affordable radiocarbon analysis.This work was performed under NSF Cooperative Agreement OCE‐0753487, and also NSF‐OPP awards 0636787 and 0944474

    A high-performance 14C accelerator mass spectrometry system

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2010. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 52 (2010): 228-235.A new and unique radiocarbon accelerator mass spectrometry (AMS) facility has been constructed at the Woods Hole Oceanographic Institution. The defining characteristic of the new system is its large-gap optical elements that provide a larger-than-standard beam acceptance. Such a system is ideally suited for high-throughput, high-precision measurements of 14C. Details and performance of the new system are presented
    • 

    corecore